

1 Equivalence and Conditional Independence in Atomic Sheaf Logic

2
3 **ALEX SIMPSON***, Faculty of Mathematics and Physics, University of Ljubljana

4 Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

5
6 We propose a semantic foundation for logics for reasoning in settings that possess a distinction between equality of variables, a coarser
7 equivalence of variables, and a notion of conditional independence between variables. We show that such relations can be modelled
8 naturally in atomic sheaf toposes. Equivalence of variables is modelled by an intrinsic relation of *atomic equivalence* that is possessed
9 by every atomic sheaf. We identify additional structure on the category generating the atomic topos (primarily, the existence of a
10 system of *independent pullbacks*) that allows the relation of conditional independence to be interpreted in the topos. We then study
11 the logic of equivalence and conditional independence that is induced by the internal logic of the topos. This *atomic sheaf logic* is a
12 classical logic that validates a number of fundamental reasoning principles relating equivalence and conditional independence. As
13 a concrete example of this abstract framework, we use the atomic topos over the category of surjections between finite nonempty
14 sets as our main running example. In this category, the interpretations of equivalence and conditional independence coincide with
15 those given by the multiteam semantics of independence logic, in which the role of equivalence is taken by the relation of mutual
16 inclusion. A major difference from independence logic is that, in atomic sheaf logic, the multiteam semantics of the equivalence and
17 conditional independence relations is embedded within a classical surrounding logic. At the end of the paper, we briefly outline two
18 other instances of our framework, to demonstrate its versatility. The first of these is a category of *probability sheaves*, in which atomic
19 equivalence is equality-in-distribution, and the conditional independence relation is the usual probabilistic one. Our other example is
20 the *Schanuel topos* (equivalent to nominal sets) where equivalence is orbit equality and conditional independence amounts to a relative
21 form of separatedness.

22
23 CCS Concepts: • Theory of computation → Logic.

24
25 Additional Key Words and Phrases: Logics for probability, Categorical probability theory, Conditional independence, Dependence
26 logic, Team semantics, Sheaves, Toposes

27
28 **ACM Reference Format:**

29 Alex Simpson. 2025. Equivalence and Conditional Independence in Atomic Sheaf Logic. *J. ACM* XX, X, Article XXX (X 2025), 53 pages.
30
31 <https://doi.org/XXXXXX.XXXXXXX>

32 1 Introduction

33 This paper provides a study of fundamental logical principles for reasoning about relations of *independence* and
34 *conditional independence* together with an associated relation of *equivalence*. The principles, which are obtained via the
35 abstract mathematical framework of *sheaf theory*, are general, in the sense that they apply uniformly to different

36 *Research supported by John Templeton Foundation grant number 39465 (2013–14).

37 This project has received funding from the European Union's
38 Horizon 2020 research and innovation programme under the Marie
39 Skłodowska-Curie grant agreement No 731143.

40 Author's Contact Information: [Alex Simpson](mailto:Alex.Simpson@fmf.uni-lj.si), Alex.Simpson@fmf.uni-lj.si, Faculty of Mathematics and Physics, University of Ljubljana
41 Institute of Mathematics, Physics and Mechanics, Ljubljana, Ljubljana, Slovenia Jadranska 19.

42 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
43 made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
44 of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
45 servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

46 © 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

47 Manuscript submitted to ACM

48 Manuscript submitted to ACM

instantiations of the notions of (conditional) independence and equivalence in a number of very different application areas. The paper focuses on the mathematical development of a general theory that is intended to be cross-disciplinary in its applicability, but with computer science as a particularly prominent source of target application areas.

Notions of *independence* and *conditional independence* arise in many scientific areas. One particularly significant area is in probability and statistics, where it has long been recognised that conditional independence relations are subject to subtle rules of inference [7, 40]. Such rules, in a graphical formulation, are crucial in the technology of Bayesian networks [15, 16, 33]. In a more logical form, they have received recent interest in the area of program verification, where, for example, versions of separation logic based on probabilistic independence have been developed [2, 5, 27].

In a different direction, the *dependence* and *independence logics* of Väänänen and Grädel [17, 42] are concerned with purely logical notions of dependence and independence between variables. Such logics are based on *team semantics*, which develops Hodges' compositional approach [20] to the semantics of *independence-friendly logic* [19] into a fully fledged semantic framework. One of the attractions of team semantics is the close relationship it enjoys with database theory and notions of dependence and independence that arise therein [18]. There is also an intriguing aspect to team semantics: it gives rise to logics that are exotic in character. This point is discussed in more detail in Section 10.1.

The starting point of the present paper, in Sections 2 and 3, is the observation that the interpretation given by team semantics, more precisely by its *multiteam* variant [11], to conditional independence statements is equivalent to interpreting these relations in a certain sheaf topos, namely the topos of atomic sheaves on the category $\mathbb{S}\text{ur}$ of finite nonempty sets and surjections. This means that the team semantics of conditional independence automatically has a logic canonically associated with it: the internal logic of the topos. Since the topos is atomic, this internal logic is ordinary classical logic, albeit with a nonstandard semantics. We thus obtain a classical logic suitable for reasoning with conditional independence relations endowed with their (multi)team semantics (Section 4).

One advantage of the atomic sheaf perspective on conditional independence is that it is very general. We axiomatise structure, on the generating category of the topos, that gives rise to a canonical interpretation of conditional independence relations. For this, we define, in Section 6, the notion of *independent pullback structure* on a category, closely related to the *conditional independence structure* of [38], but with a much more compact axiomatisation. We also expose a surprisingly rich interplay between independent pullback structure and the induced atomic sheaves. Building on this, in Section 7, we define *atomic conditional independence*, generalising the multiteam conditional-independence relation to any atomic sheaf topos over a generating category with sufficient structure.

Along the route to defining conditional independence, we observe, in Section 5, that every object of an atomic topos carries, in addition to the standard equality relation on the object, an additional intrinsic equivalence relation, which we call *atomic equivalence*. Logically, this provides us with a canonical equivalence relation between variables that is, in general, coarser than equality. In the example of the atomic topos on the category $\mathbb{S}\text{ur}$, atomic equivalence turns out to coincide with a relation of interest in team semantics, namely the *equiextension* relation.

One important contribution of the paper is the identification of fundamental axioms for relations of equivalence and conditional independence that are validated by the general interpretation of these relations in atomic toposes (over generating categories with enough structure). These axioms include the usual quantifier-free axioms from the literature (for example, axioms formalising the reasoning principles for conditional independence from [7, 40]), but also new first-order axioms that fully exploit the use of atomic sheaf logic. In Sections 5 and 7, we identify five such principles: the *transfer principle*, the *invariance principle*, the *principle of independent equivalence*, the *independent existence principle* and the property of *existence preservation*.

Throughout Sections 3–7, the abstract definitions are illustrated in the case of atomic sheaves over the category Sur , which is our main running example, chosen because of its connection to (multi)team semantics. In Sections 8 and 9 we present two other examples of our general structure, in order to give some indication of its versatility. Section 8 presents an atomic sheaf topos over a category of probability spaces. The resulting category of *probability sheaves* (first introduced in [37]) includes sheaves of random variables, over which equality coincides with the probabilistic relation of *almost sure equality*, atomic equivalence coincides with the relation of *equality in distribution*, and the atomic conditional independence relation coincides with the usual probabilistic relation. Section 9 very briefly indicates how the Schanuel topos (which is equivalent to the category of nominal sets [14, 35]) fits into our framework. In this case, atomic equivalence is the relation of orbit equality, and conditional independence amounts to a relative form of separatedness.

Finally, in Section 10, we discuss related and potential future work, including a detailed comparison with team and multiteam semantics in Section 10.1, and a discussion of potential computer science applications in Section 10.2.

This paper is an expanded version of a conference paper [39], presented at the thirty-ninth annual ACM/IEEE Symposium on Logic in Computer Science (LICS), held in Tallinn, Estonia in July 2024. In comparison with the conference paper, this journal version includes proofs of all main results, as well as an expanded discussion on sheaves in Section 3 and also a substantially expanded presentation of our second main example, the category of probability sheaves, which occupies Section 8. We further include three new appendices containing lengthy proofs that we prefer not to incorporate into the main body of the paper, where they would interrupt the flow.

2 Multiteam semantics

Dependence logic [42] and *independence logic* [17] extend first-order logic with new logical primitives expressing notions of dependence and independence between variables. These logics are based on the realisation that such new primitives can be interpreted semantically, by replacing the usual *assignments* used to interpret variables in logical formulas with *teams* (sets of assignments) or with *multiteams* (multisets of assignments). The relevant definitions are as follows, where A is an arbitrary set.

- An A -valued *assignment* is a function $\mathcal{V} \rightarrow A$ where \mathcal{V} is a (without loss of generality finite) set of variables.
- An A -valued *team* [20, 42] is a set of assignments with common variable set \mathcal{V} .
- An A -valued *multiteam* [11] is a multiset of assignments with common variable set \mathcal{V} .

Teams and multiteams give a canonical semantics to a variety of interesting new logical relations between variables, such as those expressing *dependence* $= (x, y)$, *independence* $x \perp y$, *conditional independence* $x \perp_z y$, *inclusion* $x \subseteq y$, *equiextension* $x \bowtie y$ and *exclusion* $x \mid y$, to give a non-exhaustive list. We review this in detail, in the case of multiteams, focusing on two of the above relations: conditional independence and equiextension.

A *multiset* of elements from a set A is a function $m: A \rightarrow \mathbb{N}$, which assigns to every element $a \in A$ a *multiplicity* $f(a)$. A multiset m is *finite* if its *support* (the set $\text{supp}(m) := \{a \mid m(a) > 0\}$) is finite. A multiset $m: A \rightarrow \mathbb{N}$ can alternatively be presented by a set Ω together with a function $M: \Omega \rightarrow A$ satisfying, for all $a \in A$, the fibre $M^{-1}(a)$ has cardinality $m(a)$. The elements of Ω can be thought of as names for distinct element occurrences in the multiset (so each element in A has as many names as its multiplicity). Note also that the function M has the support set $\text{supp}(m)$ as its image. Of course a multiset $m: A \rightarrow \mathbb{N}$ has many different presentations by finite-fibre functions. However, given two such representations $M: \Omega \rightarrow A$ and $M': \Omega' \rightarrow A$, there exists a bijection $i: \Omega \rightarrow \Omega'$ such that $M = M' \circ i$. (The proof of

157 this statement, although simple, requires the axiom of choice.) So multisets are in one-to-one correspondence with
 158 isomorphism classes of presentations.
 159

160 In the case of a finite multiset $m: A \rightarrow \mathbb{N}$, the domain set Ω of a presentation $M: \Omega \rightarrow A$ is necessarily finite, and
 161 all functions with finite domain present finite multisets. Thus there is a one-to-one correspondence between finite
 162 multisets and isomorphism classes of finite-domain presentations. (Moreover, because the multisets are now finite, the
 163 axiom of choice is no longer needed.)

164 Since a *multiteam* is a multiset of assignments with a common \mathcal{V} , it can be presented by a finite-fibred function of
 165 the form
 166

$$167 \quad M: \Omega \rightarrow (\mathcal{V} \rightarrow A) .$$

168 As in [11], we restrict attention to finite multiteams. Henceforth, by *multiteam* we mean a finite multiset of assignments
 169 with common \mathcal{V} . Such finite multiteams correspond to functions M , as above, for which the set Ω is finite. Equivalently,
 170 by transposition, a multiteam can be represented by a function of the form
 171

$$172 \quad \underline{M}: \mathcal{V} \rightarrow (\Omega \rightarrow A)$$

173 While this is just a simple set-theoretic reorganisation of the notion of multiteam, it provides an illuminating alternative
 174 perspective on multiteam semantics, which we now elaborate.
 175

176 One can think of a function $X: \Omega \rightarrow A$ as a *nondeterministic variable* valued in A . Here the terminology is motivated
 177 by analogy with the notion of *random variable* from probability theory. In our setting, we view the *set* Ω as a finite
 178 *sample set*, a nondeterministic version of a *sample space* in probability theory. The sample set represents a realm of
 179 possible nondeterministic choices. With this terminology, a multiteam presented as $\underline{\rho}: \mathcal{V} \rightarrow (\Omega \rightarrow A)$ is simply an
 180 assignment of A -valued nondeterministic variables (with shared sample set) to logical variables. (In this paper, we
 181 restrict to finite sample sets. Nevertheless, the notion of nondeterministic variable obviously generalises to arbitrary
 182 sample sets Ω .)

183 We now use the above formulation of multiteams as assignments of nondeterministic variables to recast definitions
 184 from multiteam semantics (as in [11]). Technically, this is simply a straightforward matter of translating the definitions
 185 along the equivalence between the two formulations of multiteam. However, even if mathematically equivalent, our
 186 formulation of multiteam encourages a different ‘local’ style of presentation, where the sample sets Ω play a role similar
 187 to that played by *possible worlds* in Kripke semantics and by *forcing conditions* in set theory.

188 Before addressing semantics, we introduce our syntax. For greater generality, we work with a multi-sorted logic.
 189 This also has the advantage that the sorting constraints on logical primitives provide useful information about their
 190 generality in scope. Accordingly, we assume a set *Sort* of basic syntactic *sorts* A, B, C, \dots . Variables x^A have explicit
 191 sorts. We consider three forms of atomic formula.

- 192 • If x^A, y^A have the same sort, then $x^A = y^A$ is an atomic formula.
- 193 • If $x_1^{A_1}, \dots, x_n^{A_n}$ and $y_1^{A_1}, \dots, y_n^{A_n}$ are two lists of variables of the same length $n \geq 0$ with identical sort lists, then

$$194 \quad x_1^{A_1}, \dots, x_n^{A_n} \sim y_1^{A_1}, \dots, y_n^{A_n} \tag{1}$$

195 is an atomic formula.

- 196 • If $x_1^{A_1}, \dots, x_m^{A_m}$ and $y_1^{B_1}, \dots, y_n^{B_n}$ and $z_1^{C_1}, \dots, z_l^{C_l}$ are three lists of variables (with $m, n, l \geq 0$) then

$$197 \quad x_1^{A_1}, \dots, x_m^{A_m} \perp y_1^{B_1}, \dots, y_n^{B_n} \mid z_1^{C_1}, \dots, z_l^{C_l} \tag{2}$$

209 is an atomic formula.
 210
 211

212 The first formula expresses *equality*, as in ordinary (multi-sorted) first-order logic. The remaining two are atomic
 213 constructs borrowed from logics associated with team semantics.

214 The formula $\vec{x} \sim \vec{y}$ represents what we call *equivalence*, which arises in the team-semantics literature as *equiextension*
 215 $\vec{x} \subseteq \vec{y} \wedge \vec{y} \subseteq \vec{x}$, sometimes written with the notation $\vec{x} \bowtie \vec{y}$. Our more neutral notation and terminology reflects the fact
 216 that we will later consider other interpretations of the \sim relation. The use of vectors of variables on either side is needed
 217 because equivalence is a relation that holds between the vectors \vec{x} and \vec{y} *jointly*, and does not reduce to a conjunction of
 218 equivalences between components.
 219

220 The formula $\vec{x} \perp \vec{y} | \vec{z}$ represents *conditional independence* from the *independence logic* of [17], where it is written
 221 $\vec{x} \perp_{\vec{z}} \vec{y}$. In our syntax, we take the conditioning variables out of the subscript position in order to give them more
 222 prominence, adopting a notation that is familiar from probability theory. An important special case of conditional
 223 independence is when the sequence \vec{z} is empty. In such cases, we write simply $\vec{x} \perp \vec{y}$ for the resulting relation, which
 224 expresses unconditional independence.
 225

226 It is of course the atomic formulas $\vec{x} \sim \vec{y}$ and $\vec{x} \perp \vec{y} | \vec{z}$ that give us *equivalence* and *conditional independence* in the
 227 title of this paper.
 228

229 To define the semantics, we assume we have, for every sort A , an associated set $\llbracket A \rrbracket$. In a multi-sorted setting, an
 230 assignment for a finite set \mathcal{V} of variables is an element
 231

$$\underline{\rho} \in \prod_{x^A \in \mathcal{V}} \llbracket A \rrbracket ,$$

232 and a multiteam is a finite multiset of assignments. In the standard multiteam semantics, a formula $\Phi(x_1^{A_1}, \dots, x_n^{A_n})$ (i.e.,
 233 all free variables are in $\{x_1^{A_1}, \dots, x_n^{A_n}\}$) is given a satisfaction relation
 234

$$\models_m \Phi , \tag{3}$$

235 where m is a multiteam of $\{x_1^{A_1}, \dots, x_n^{A_n}\}$ -assignments. If instead we adopt the reformulation of multisets described
 236 above, a multiteam is given as a *single* assignment
 237

$$\underline{\rho} \in \prod_{x^A \in \mathcal{V}} (\Omega \rightarrow \llbracket A \rrbracket) \tag{4}$$

238 of nondeterministic variables to logic variables, and the satisfaction relation can then be rewritten as
 239

$$\models_{\underline{\rho}} \Phi . \tag{5}$$

240 It turns out to be helpful to make the sample set Ω , that occurs implicitly within $\underline{\rho}$, explicit in the notation, so we write
 241

$$\Omega \Vdash_{\underline{\rho}} \Phi . \tag{6}$$

242 We here switch to the ‘forcing’ notation \Vdash , since we shall view Ω as a ‘possible world’ or ‘condition’ (capturing all the
 243 nondeterminism that the multiteam uses) that determines the ‘local truth’ of Φ . We stress that relations (3), (5) and (6)
 244 all have exactly the same meaning. The only differences are in the formulation of multiset that is used, and whether or
 245 not Ω is explicit in the notation.
 246

247 Figure 1 defines the forcing relation $\Omega \Vdash_{\underline{\rho}} \Phi$ directly in terms of our reformulated multiteams, as in (4), for atomic
 248 formulas Φ . In the clauses for equivalence and independence we use the notation $\underline{\rho}(\vec{x})$, where \vec{x} is a vector of variables
 249

$$\begin{aligned}
 261 \quad \Omega \models_{\underline{\rho}} x^A = y^A &\Leftrightarrow \underline{\rho}(x^A) = \underline{\rho}(y^A) \quad (\text{equal functions } \Omega \rightarrow \llbracket A \rrbracket) \\
 262 \\
 263 \quad \Omega \models_{\underline{\rho}} \vec{x} \sim \vec{y} &\Leftrightarrow \underline{\rho}(\vec{x}) \bowtie \underline{\rho}(\vec{y}) \\
 264 \quad \Omega \models_{\underline{\rho}} \vec{x} \perp \vec{y} \mid \vec{z} &\Leftrightarrow \underline{\rho}(\vec{x}) \perp \underline{\rho}(\vec{y}) \mid \underline{\rho}(\vec{z}) \\
 265 \\
 266 \\
 267 \quad \text{Fig. 1. Multiteam semantics of atomic formulas} \\
 268 \\
 269 \\
 270 \quad x_1^{A_1}, \dots, x_n^{A_n}, \text{ to represent the } (\llbracket A_1 \rrbracket \times \dots \times \llbracket A_n \rrbracket)\text{-valued nondeterministic variable} \\
 271 \quad \underline{\rho}(\vec{x}) := \omega \mapsto (\underline{\rho}(x_1^{A_1}), \dots, \underline{\rho}(x_n^{A_n})) : \Omega \rightarrow \llbracket A_1 \rrbracket \times \dots \times \llbracket A_n \rrbracket .
 \end{aligned}$$

We also write $X \bowtie Y$ and $X \perp \perp Y \mid Z$ for the semantic relation of *equiextension* and *conditional independence* between nondeterministic variables, as defined below.

Definition 2.1 (Equiextension for nondeterministic variables). Two nondeterministic variables $X: \Omega \rightarrow A$ and $Y: \Omega \rightarrow A$ are *equiextensive* (notation $X \bowtie Y$) if they have equal images, i.e., $X(\Omega) = Y(\Omega)$.

Definition 2.2 (Conditional independence for nondeterministic variables). Let $X: \Omega \rightarrow A$, $Y: \Omega \rightarrow B$ and $Z: \Omega \rightarrow C$ be nondeterministic variables. We say that X and Y are *conditionally independent* given Z (notation $X \perp \perp Y \mid Z$) if, for all $a \in A, b \in B, c \in C$,

$$\begin{aligned}
 284 \quad (\exists \omega \in \Omega. X(\omega) = a \text{ and } Z(\omega) = c) \text{ and } (\exists \omega \in \Omega. Y(\omega) = b \text{ and } Z(\omega) = c) \\
 285 \quad \text{implies } \exists \omega \in \Omega. X(\omega) = a \text{ and } Y(\omega) = b \text{ and } Z(\omega) = c .
 \end{aligned}$$

In the literature on (in)dependence logics, the semantic clauses for atomic formulas are extended with clauses giving meaning to the logical connectives and quantifiers. A number of inequivalent ways of achieving this appear in the literature [11, 17, 42]. All share the feature that the resulting logics are exotic. We shall discuss this in more detail in Section 10.1.

In this paper, we consider a different approach to embedding the equivalence and conditional independence constructs, with their multiteam semantics, in a full multi-sorted first-order logic. We observe that the multiteam semantics of the atomic constructs lives naturally in a certain *atomic sheaf topos*, and then we make use of the standard *internal logic* of the topos, which in the case of an atomic topos is classical logic.

3 Atomic sheaves

In this section, we define the notion of *atomic sheaf topos*, which is a special kind of *Grothendieck topos*. We restrict attention to presenting the definitions and results we shall make use of, attempting to do so in such a way that they can be understood from first principles given knowledge of core category theory. For further contextualisation, [29] is an excellent source.

A *presheaf* on a small category \mathbb{C} is a functor $P: \mathbb{C}^{\text{op}} \rightarrow \mathbf{Set}$ (note the contravariance). The *presheaf category* $\text{Psh}(\mathbb{C})$ is the functor category $\mathbf{Set}^{\mathbb{C}^{\text{op}}}$. Given a presheaf P , object Y of \mathbb{C} , element $y \in PY$ and map $f: X \rightarrow Y$ in \mathbb{C} , we write $y \cdot_P f$ for the element $P(f)(y) \in PX$, or simply $y \cdot f$ when P is clear from the context.

Example 3.1 (Representable presheaves). For any object $Z \in \mathbb{C}$, the *representable presheaf* $\mathbf{y}Z := \mathbb{C}(-, Z)$ is defined by

- For any object $X \in \mathbb{C}$, define $\mathbf{y}Z(X) := \mathbb{C}(X, Z)$, i.e., the hom set.

- For any map $f: Y \rightarrow X$ in \mathbb{C} and $g \in (yZ)(X)$, define $g \cdot f := g \circ f$.

The object mapping $Z \mapsto yZ$ extends to a full and faithful functor $y : \mathbb{C} \rightarrow \text{Psh}(\mathbb{C})$, the *Yoneda functor* [29].

Example 3.2 (Product presheaves). Let P_1, \dots, P_n be presheaves on \mathbb{C} . Define the *product presheaf* $P_1 \times \dots \times P_n$ in $\text{Psh}(\mathbb{C})$ by:

- For any object $X \in \mathbb{C}$, define

$$(P_1 \times \cdots \times P_n)(X) := P_1(X) \times \cdots \times P_n(X) ,$$

i.e., the product of sets.

- For any map $f: Y \rightarrow X$ in \mathbb{C} and $(x_1, \dots, x_n) \in (P_1 \times \dots \times P_n)(X)$, define

$$(x_1, \dots, x_n) \cdot f := (x_1 \cdot_{P_1} f, \dots, x_n \cdot_{P_n} f)$$

The above definition generalises to infinite products, and further to arbitrary category-theoretic limits and colimits, all of which are defined on presheaves in a similar (pointwise) way, using the corresponding definitions in the category of sets.

The next example is central to this paper.

Example 3.3. Let $\mathbb{S}\text{ur}$ be (a small category equivalent to) the category whose objects are non-empty finite sets and whose morphisms are surjective functions. For any set A , we have a presheaf $\underline{\text{NV}}(A)$ in $\text{Psh}(\mathbb{S}\text{ur})$ of A -valued *nondeterministic variables* (in the sense of Section 2), defined as follows.

- For any object Ω of Sur , define $\underline{\mathsf{NV}}(A)(\Omega)$ to be the set of all functions $\Omega \rightarrow A$.
- For any map $p: \Omega' \rightarrow \Omega$ in Sur , and $X \in \underline{\mathsf{NV}}(A)(\Omega)$ define $X \cdot p$ to be $X \circ p \in \underline{\mathsf{NV}}(A)(\Omega')$.

Grothendieck introduced a very general notion of what it means for a presheaf $P \in \text{Psh}(\mathbb{C})$ to be a *sheaf* relative to a *Grothendieck topology* on \mathbb{C} . A Grothendieck topology \mathcal{T} specifies, for every object X , a collection \mathcal{J}_X of families of maps with codomain X , in which each family of maps $(c_i: Y_i \longrightarrow X)_{i \in I} \in \mathcal{J}_X$ is deemed to provide a *covering family* (more briefly *cover*) for X . A presheaf P is a *\mathcal{T} -sheaf* if, for every such cover, every *matching* family of elements $(y_i \in P(Y_i))_{i \in I}$ has a unique *amalgamation* $x \in P(X)$. The high-level idea is that the *matching* property, which says that the y_i elements agree with each other on overlapping parts of the cover, allows all the y_i to be glued together into a single *amalgamation* x , which is an element of $P(X)$. We shall not give the general definitions underlying the emphasised words because, for this paper, it is not necessary to understand the notion of sheaf in its full generality. Nonetheless, there is a point about the general definition worth making. The intuition that is usually presented for the general definition is that the matching condition for the family $(y_i \in P(Y_i))_{i \in I}$ means that the different y_i are compatible with each other, and then the unique amalgamation ‘glues’ these compatible elements together to form a single element $x \in P(X)$, which is possible because the object X is covered by the family $(Y_i)_{i \in I}$. In this paper, we are going to work only with sheaves for *atomic* Grothendieck topologies, for which the usual general intuition for sheaves outlined above is not very helpful. In the case of an atomic topology, covers are single maps $c: Y \longrightarrow X$, matching families contain only one element $y \in P(Y)$ (it needs to match only with itself, which turns out to be a nontrivial condition) and the amalgamation $x \in P(X)$ is obtained from y alone, so the usual ‘gluing’ intuition does not apply. Instead, we shall use the terminology *invariant element* in place of matching family, and *descendent* in place of amalgamation, since this seems more appropriate in the context of an atomic topology.

365 We first introduce the atomic sheaf concept using the example of $\mathbb{S}\text{ur}$, and then follow this with the generalisation
 366 to an arbitrary small category \mathbb{C} . In the case of $\mathbb{S}\text{ur}$, an object Ω can be thought of as representing a ‘world’ of currently
 367 available nondeterministic choices, and a map $c : \Omega' \rightarrow \Omega$ specifies an extension of the existing nondeterministic
 368 choices in Ω to accommodate the additional nondeterminism potentially available in Ω' . Nondeterministic variables
 369 form a presheaf $\underline{\mathbf{NV}}(A)$ simply because any nondeterministic variable $X \in \underline{\mathbf{NV}}(A)(\Omega)$ extends via c to a corresponding
 370 Ω' -based nondeterministic variable $X \cdot c := X \circ c \in \underline{\mathbf{NV}}(A)(\Omega')$. This latter nondeterministic variable is defined for all
 371 nondeterministic choices in Ω' , but only makes use of nondeterminism already available in Ω ; that is, $(X \cdot c)(\omega') =$
 372 $(X \cdot c)(\omega'')$ for any $\omega', \omega'' \in \Omega'$ for which $c(\omega') = c(\omega'')$. Furthermore, every element $Y \in \underline{\mathbf{NV}}(A)(\Omega')$, that only
 373 makes use of nondeterminism in Ω , arises as $Y = X \cdot c$ for a unique $X \in \underline{\mathbf{NV}}(A)(\Omega)$. In other words, it has a unique
 374 representation as a *bona fide* Ω -based nondeterministic variable X . In order to formulate this technically, we say
 375 that a nondeterministic variable $Y \in \underline{\mathbf{NV}}(A)(\Omega')$ is *c-invariant* if $Y(\omega') = Y(\omega'')$ for any $\omega', \omega'' \in \Omega'$ for which
 376 $c(\omega') = c(\omega'')$. The presheaf $\underline{\mathbf{NV}}(A)$ then satisfies: every *c-invariant* $Y \in \underline{\mathbf{NV}}(A)(\Omega')$ arises as $X \cdot c$ for a unique
 377 $X \in \underline{\mathbf{NV}}(A)(\Omega)$, which we call the *c-descendent* of Y . As we shall see below, the property we have just elucidated asserts
 378 that the presheaf $\underline{\mathbf{NV}}(A)$ is a *sheaf* for the *atomic Grothendieck topology* on the category $\mathbb{S}\text{ur}$.
 379

380 A similar story can be told for any small category \mathbb{C} for which an object $X \in \mathbb{C}$ can be thought of as a world of
 381 current possibilities, and a map $c : Y \rightarrow X$ represents a way of extending the current world to another world Y with
 382 additional possibilities. Given a presheaf P an element $x \in P(X)$ and map $c : Y \rightarrow X$, the element $x \cdot c \in P(Y)$ represents
 383 the extension of x to incorporate the new possibilities from Y . The extended element $x \cdot c$ enjoys the property of
 384 *c-invariance* (Definition 3.6 below), which formalises that $x \cdot c$ does not depend on any of the possibilities in Y beyond
 385 those already available in X . Moreover, for any $y \in P(Y)$ that is *c-invariant*, the definition of *atomic sheaf* (Definition 3.8
 386 below) says that there must exist a unique $x \in P(X)$ that, via the equation $y = x \cdot c$, makes explicit the true dependency
 387 of y only on X .
 388

389 The main intuition underpinning the above discussion can be summarised as follows. In the context of a category
 390 \mathbb{C} , for which we think of maps $c : Y \rightarrow X$ as extending the possibilities offered by state X to a more refined set of
 391 possibilities offered by state Y ,
 392

- 393 • the *presheaf* property of P says that we can *extend* any element $x \in P(X)$, defined using the possibilities at X ,
 394 to a corresponding element $x \cdot c \in P(Y)$ that, although defined at Y , does not exploit the potential additional
 395 generality of Y ;
- 396 • and the *atomic sheaf* property says that, for any element $y \in P(Y)$, defined using the possibilities at Y in
 397 such a way that y does not exploit the potential greater generality afforded by Y over X , there exists a unique
 398 corresponding element $x \in P(X)$ that makes explicit the dependency of y only on possibilities offered by X .
 399

400 Since we are interested only in atomic topologies, we can define the sheaf property (Definition 3.8 below) directly,
 401 without needing to introduce the general notion of Grothendieck topology. However, we do need the atomic Grothendieck
 402 topology to exist on the base category \mathbb{C} , which happens if and only if the category \mathbb{C} is *coconfluent*.
 403

404 *Definition 3.4 (Coconfluence).* A category \mathbb{C} is *coconfluent*¹ if for any cospan $X \xrightarrow{f} Z \xleftarrow{g} Y$, there exists a span
 405 $X \xleftarrow{u} W \xrightarrow{v} Y$ such that $f \circ u = g \circ v$.
 406

407 **PROPOSITION 3.5.** $\mathbb{S}\text{ur}$ is *coconfluent*.
 408

409 ¹In [23, A 2.1.11(h)] \mathbb{C} is said to satisfy the *right Ore condition*.
 410

417 PROOF. Consider any cospan $\Omega_X \xrightarrow{p} \Omega_Z \xleftarrow{q} \Omega_Y$ in $\mathbb{S}\mathbb{U}\mathbb{R}$, Define

$$419 \quad \Omega_W := \{(x, y) \in \Omega_X \times \Omega_Y \mid p(x) = q(y)\} .$$

420 Then $u := (x, y) \mapsto x$ and $v := (x, y) \mapsto y$ define surjective functions $\Omega_W \twoheadrightarrow \Omega_X$ and $\Omega_W \twoheadrightarrow \Omega_Y$, hence they are maps
 421 in $\mathbb{S}\mathbb{U}\mathbb{R}$, for which indeed $p \circ u = q \circ v$. (More briefly, the pullback in **Set** is a commuting square in $\mathbb{S}\mathbb{U}\mathbb{R}$, though not a
 422 pullback in $\mathbb{S}\mathbb{U}\mathbb{R}$.) \square

425 Let $P \in \text{Psh}(\mathbb{C})$ be a presheaf.

427 *Definition 3.6 (Invariant element).* Given $c: Y \rightarrow X$ and $y \in P(Y)$ we say that y is *c-invariant* if, for any parallel pair
 428 of maps $d, e: Z \rightarrow Y$ such that $c \circ d = c \circ e$, it holds that $y \cdot d = y \cdot e$.

430 *Definition 3.7 (Descendent).* Given $c: Y \rightarrow X$ and $y \in P(Y)$ we say that $x \in P(X)$ is a *c-descendent* of y if $y = x \cdot c$.

432 It is easily seen that if x is a *c-descendent* of y then y is *c-invariant*. The notion of sheaf imposes a converse.

434 *Definition 3.8 (Atomic sheaf).* A presheaf $P \in \text{Psh}(\mathbb{C})$ is an *atomic sheaf* if, for every map $c: Y \rightarrow X$ in \mathbb{C} , every
 435 *c-invariant* $y \in P(Y)$ has a unique *c-descendent* $x \in P(X)$.

437 We shall also have use for the following weakening of the notion of sheaf.

439 *Definition 3.9 (Separated presheaf).* A presheaf $P \in \text{Psh}(\mathbb{C})$ is an *separated* (with respect to the atomic topology) if,
 440 for every map $c: Y \rightarrow X$ in \mathbb{C} , every *c-invariant* $y \in P(Y)$ has at most one *c-descendent* $x \in P(X)$

442 **PROPOSITION 3.10.** A presheaf $P \in \text{Psh}(\mathbb{C})$ is separated if and only if, for all $x, y \in P(X)$ and $q: Z \rightarrow X$, it holds that
 443 $x \cdot q = y \cdot q$ implies $x = y$.

446 PROOF. Suppose P is separated, and x, y and q are such that $x \cdot q = y \cdot q$. It then holds that $x \cdot q$ is *q-invariant*, and x
 447 and y are *q-descendents* of $x \cdot q$. So, by separatedness, $x = y$.

448 The converse implication, showing that separatedness follows from the statement in the proposition, is easy. \square

450 Propositions 3.11 and 3.12 below illustrate the notion of sheaf in the case of $\mathbb{C} = \mathbb{S}\mathbb{U}\mathbb{R}$.

452 **PROPOSITION 3.11.** For any set A the presheaf $\underline{\text{NV}}(A)$ in $\text{Psh}(\mathbb{S}\mathbb{U}\mathbb{R})$ is an atomic sheaf.

454 PROOF. Consider any map $c: \Omega' \rightarrow \Omega$ in $\mathbb{S}\mathbb{U}\mathbb{R}$ and *c-invariant* $Y \in \underline{\text{NV}}(A)(\Omega')$, i.e., function $Y: \Omega' \rightarrow A$. Define

$$456 \quad \Omega'' := \{(\omega', \omega'') \in \Omega' \times \Omega' \mid c(\omega') = c(\omega'')\},$$

457 and $u := (\omega', \omega'') \mapsto \omega': \Omega'' \rightarrow \Omega'$ and $v := (\omega', \omega'') \mapsto \omega'': \Omega'' \rightarrow \Omega'$. Clearly $c \circ u = c \circ v$. So, since Y is *c-invariant*,
 458 $Y \circ u = Y \cdot u = Y \cdot v = Y \circ v$. That is, for any $(\omega', \omega'') \in \Omega''$, we have $Y(\omega') = Y(\omega'')$; i.e., for any $\omega \in \Omega$, the function
 459 Y is constant on $c^{-1}(\omega)$. Define $X \in \underline{\text{NV}}(A)(\Omega)$, i.e., $X: \Omega(A)$ by:

$$462 \quad X(\omega) := Y(\omega') \text{ where } \omega' \in c^{-1}(\omega) . \quad (7)$$

463 Since c is surjective, this is a good definition by the constancy property remarked above. By definition, $Y = X \circ c = X \cdot c$,
 464 so X is a *c-descendent* of Y . It is the unique such, because, for any *c-descendent* X , the surjectivity of c forces (7). \square

467 **PROPOSITION 3.12.** For any finite set Ω the representable presheaf $\mathbf{y}(\Omega)$ in $\text{Psh}(\mathbb{S}\mathbb{U}\mathbb{R})$ is an atomic sheaf.

469 We omit the proof, which is very similar to the previous. This last proposition asserts that the atomic topology on $\mathbb{S}\text{ur}$
470 is *subcanonical*.

471 As a final set of examples, it is standard (and also easily verified) that if $\underline{P}_1, \dots, \underline{P}_n$ are sheaves then the product
472 presheaf $\underline{P}_1 \times \dots \times \underline{P}_n$ is also a sheaf, the *product sheaf*. (A similar fact applies more generally to arbitrary category-
473 theoretic limits of sheaves.) In this statement, we introduce a notational convention we shall often adopt. We shall
474 typically use underlined names for sheaves (as with $\underline{\text{NV}}(A)$) in order to emphasise that they are sheaves not just
475 presheaves.

476 Assuming the small category \mathbb{C} is coconfluent, we write $\text{Sh}_{\text{at}}(\mathbb{C})$ for the full subcategory of atomic sheaves in $\text{Psh}(\mathbb{C})$.
477 While the coconfluence condition was not actually used in the definition of atomic sheaf above, it nonetheless plays
478 a critical role. For the benefit of readers who know the relevant category theory, we reiterate that the coconfluence
479 condition is equivalent to the collection of atomic covers in \mathbb{C} forming a Grothendieck topology, which in turn means that
480 $\text{Sh}_{\text{at}}(\mathbb{C})$ is a *Grothendieck topos*, and the inclusion functor $\text{Sh}_{\text{at}}(\mathbb{C}) \rightarrow \text{Psh}(\mathbb{C})$ has a left adjoint $\mathbf{a} : \text{Psh}(\mathbb{C}) \rightarrow \text{Sh}_{\text{at}}(\mathbb{C})$,
481 the *associated sheaf* functor [29]. Composing with the Yoneda functor, we obtain a functor $\mathbf{a}\mathbf{y} : \mathbb{C} \rightarrow \text{Sh}_{\text{at}}(\mathbb{C})$. Because
482 we are working with atomic topologies, every map in \mathbb{C} is a *cover*, i.e., it is mapped by $\mathbf{a}\mathbf{y}$ to an epimorphism in $\text{Sh}_{\text{at}}(\mathbb{C})$.
483 It thus follows from the Yoneda lemma that a necessary condition for every representable presheaf to be a sheaf (i.e.,
484 for the atomic topology to be subcanonical) is that all maps in \mathbb{C} are epimorphic.

485 4 Atomic sheaf logic

486 For the next two sections, let \mathbb{C} be an arbitrary coconfluent small category. We present a fragment of the internal logic
487 of the topos $\text{Sh}_{\text{at}}(\mathbb{C})$ of atomic sheaves, which we will extend later with equivalence and conditional independence
488 formulas. The fragment we consider is simply multi-sorted first-order logic. Let Sort be a collection of sorts. We assume
489 a collection of primitive relation symbols, where each relation symbol R has an *arity* given as a finite sequence of sorts
490 $\text{arity}(R) \in \text{Sort}^*$. As in Section 2, variables x^A have explicit sorts. The rules for forming atomic formulas are:

- 491 • if $\text{arity}(R) = A_1 \dots A_n$ and $x_1^{A_1}, \dots, x_n^{A_n}$ is a list of variables of the corresponding sorts, then $R(x_1^{A_1}, \dots, x_n^{A_n})$ is a
492 formula;
- 493 • if x^A, y^A have the same sort then $x^A = y^A$ is a formula.

494 The grammar for formulas extends atomic formulas with the usual constructs of first-order logic.

$$\Phi ::= R(x_1^{A_1}, \dots, x_n^{A_n}) \mid x^A = y^A \mid \neg\Phi \mid \Phi \wedge \Phi \mid \Phi \vee \Phi \mid \Phi \rightarrow \Phi \mid \exists x^A. \Phi \mid \forall x^A. \Phi .$$

495 We write $\text{FV}(\Phi)$ for the set of free variables of a formula Φ .

496 *Definition 4.1 (Semantic interpretation).* A *semantic interpretation* in $\text{Sh}_{\text{at}}(\mathbb{C})$ is given by a function mapping every
497 sort A to an atomic sheaf \underline{A} (i.e., to an object of $\text{Sh}_{\text{at}}(\mathbb{C})$), and a function mapping every relation symbol R of arity
498 $A_1 \dots A_n$ to a *subsheaf* $\underline{R} \subseteq \underline{A_1} \times \dots \times \underline{A_n}$.

499 *Definition 4.2 (Subpresheaf/subsheaf).* For $P, Q \in \text{Psh}(\mathbb{C})$, we say that Q is a *subpresheaf* of P (notation $Q \subseteq P$) if:

- 500 • for every object $X \in \mathbb{C}$, we have $Q(X) \subseteq P(X)$, and
- 501 • for every map $f : Y \rightarrow X$ in \mathbb{C} and element $x \in Q(X)$, it holds that $x \cdot_Q f = x \cdot_P f$.

502 For sheaves $\underline{P}, \underline{Q}$ with $\underline{Q} \subseteq \underline{P}$, we say \underline{Q} is a *subsheaf* of \underline{P} .

503 The following is standard, and also easily verified.

521 PROPOSITION 4.3. *Given a presheaf $P \in \text{Psh}(\mathbb{C})$ and a function Q mapping every object $X \in \mathbb{C}$ to a subset of $P(X)$, the*
 522 *function Q determines a (necessarily unique) subpresheaf of P if and only if:*

- 524 • *for every $f: Y \rightarrow X$ in \mathbb{C} and $x \in Q(X)$, it holds that $x \cdot_P f \in Q(Y)$.*

525 *If the above holds and P is also a sheaf, then the uniquely determined subpresheaf Q is itself a sheaf if and only if*

- 527 • *for every $f: Y \rightarrow X$ in \mathbb{C} and $x \in P(X)$, if $x \cdot_P f \in Q(Y)$ then $x \in Q(X)$.*

529 *(This characterisation is valid in the form above because we are considering only sheaves for the atomic topology.)*

530 The three propositions below illustrate the notion of subsheaf. The first two observe that the relations of equiextension
 531 and conditional independence of nondeterministic variables (Definitions 2.1 and 2.2) form subsheaves, a fact which
 532 will enable us to extend atomic sheaf logic with equivalence and conditional-independence relations at the end of the
 533 present section. Although the proofs are straightforward, we include them to help give readers who are not familiar
 534 with sheaves some feeling for the subsheaf property.

537 PROPOSITION 4.4. *The subsets*

$$539 \{(X, Y) \mid X \bowtie Y\} \subseteq (\underline{\text{NV}}(A) \times \underline{\text{NV}}(A))(\Omega)$$

540 define a subsheaf $\bowtie_A \subseteq \underline{\text{NV}}(A) \times \underline{\text{NV}}(A)$ via Proposition 4.3.

542 PROOF. For the subpresheaf property, suppose $(X, Y) \in (\underline{\text{NV}}(A) \times \underline{\text{NV}}(A))(\Omega)$ are such that $(X, Y) \in \bowtie_A(\Omega)$; i.e.,
 543 we have equality of images $X(\Omega) = Y(\Omega)$. Let $q: \Omega' \rightarrow \Omega$ be a map in \mathbb{Sur} . We need to show that $(X \cdot q, Y \cdot q) \in \bowtie_A(\Omega')$.
 544 But indeed

$$546 (X \cdot q)(\Omega') = X(q(\Omega')) = X(\Omega) = Y(\Omega) = Y(q(\Omega')) = (Y \cdot q)(\Omega') ,$$

547 where the second and fourth equalities hold because q is surjective.

549 For the subsheaf property, suppose we have $(X, Y) \in (\underline{\text{NV}}(A) \times \underline{\text{NV}}(A))(\Omega)$ and map $q: \Omega' \rightarrow \Omega$ in \mathbb{Sur} such that
 550 $(X \cdot q, Y \cdot q) \in \bowtie_A(\Omega')$. By the definition of equiextension, $X(q(\Omega')) = Y(q(\Omega'))$. Because q is surjective, $X(\Omega) = Y(\Omega)$.
 551 That is, $(X, Y) \in \bowtie_A(\Omega)$, as required by Proposition 4.3 to show the subsheaf property. \square

553 PROPOSITION 4.5. *The subsets*

$$555 \{(X, Y, Z) \mid X \perp\!\!\!\perp Y \mid Z\} \subseteq (\underline{\text{NV}}(A) \times \underline{\text{NV}}(B) \times \underline{\text{NV}}(C))(\Omega)$$

557 define a subsheaf $\perp\!\!\!\perp_{A,B|C} \subseteq \underline{\text{NV}}(A) \times \underline{\text{NV}}(B) \times \underline{\text{NV}}(C)$ via Prop. 4.3.

559 PROOF. We leave the subpresheaf property to the reader and verify just the subsheaf property. Suppose we have
 560 $(X, Y, Z) \in (\underline{\text{NV}}(A) \times \underline{\text{NV}}(B) \times \underline{\text{NV}}(C))(\Omega)$ and map $q: \Omega' \rightarrow \Omega$ in \mathbb{Sur} such that $(X \cdot q, Y \cdot q, Z \cdot q) \in \perp\!\!\!\perp_{A,B|C}(\Omega')$;
 561 i.e., $X \cdot q \perp\!\!\!\perp Y \cdot q \mid Z \cdot q$. We need to show that $(X, Y, Z) \in \perp\!\!\!\perp_{A,B|C}(\Omega)$; i.e., $X \perp\!\!\!\perp Y \mid Z$.

563 Suppose that there exists $\omega_1 \in \Omega$ such that $X(\omega_1) = a$ and $Z(\omega_1) = c$, and there exists $\omega_2 \in \Omega$ such that $Y(\omega_2) = b$
 564 and $Z(\omega_2) = c$. Using the surjectivity of q , let $\omega'_1, \omega'_2 \in \Omega'$ be such that $q(\omega'_1) = \omega_1$ and $q(\omega'_2) = \omega_2$. Then $(X \cdot q)(\omega'_1) = a$
 565 and $(Z \cdot q)(\omega'_1) = c$. Similarly $(Y \cdot q)(\omega'_2) = b$ and $(Z \cdot q)(\omega'_2) = c$. Because $X \cdot q \perp\!\!\!\perp Y \cdot q \mid Z \cdot q$, there exists $\omega' \in \Omega'$
 566 such that $(X \cdot q)(\omega') = a$ and $(Y \cdot q)(\omega') = b$ and $(Z \cdot q)(\omega') = c$. So $\omega := q(\omega')$ satisfies $X(\omega) = a$ and $Y(\omega) = b$ and
 567 $Z(\omega) = c$, showing that indeed $X \perp\!\!\!\perp Y \mid Z$. \square

569 As further interesting examples of subsheaves, we show how subsheaves of the sheaf $\underline{\text{NV}}(A)$ can be defined by using
 570 modalities to lift properties $P \subseteq A$ to properties of A -valued nondeterministic variables.

$$\begin{aligned}
573 \quad X \Vdash_{\underline{\rho}} R(x_1^{A_1}, \dots, x_n^{A_n}) &\Leftrightarrow (\underline{\rho}(x_1^{A_1}), \dots, \underline{\rho}(x_n^{A_n})) \in \underline{R}(X) \\
574 \\
575 \quad X \Vdash_{\underline{\rho}} x^A = y^A &\Leftrightarrow \underline{\rho}(x^A) = \underline{\rho}(y^A) \\
576 \quad X \Vdash_{\underline{\rho}} \neg \Phi &\Leftrightarrow X \not\Vdash_{\underline{\rho}} \Phi \\
577 \\
578 \quad X \Vdash_{\underline{\rho}} \Phi \wedge \Psi &\Leftrightarrow X \Vdash_{\underline{\rho}} \Phi \text{ and } X \Vdash_{\underline{\rho}} \Psi \\
579 \quad X \Vdash_{\underline{\rho}} \Phi \vee \Psi &\Leftrightarrow X \Vdash_{\underline{\rho}} \Phi \text{ or } X \Vdash_{\underline{\rho}} \Psi \\
580 \quad X \Vdash_{\underline{\rho}} \Phi \rightarrow \Psi &\Leftrightarrow X \not\Vdash_{\underline{\rho}} \Phi \text{ or } X \Vdash_{\underline{\rho}} \Psi \\
581 \\
582 \quad X \Vdash_{\underline{\rho}} \exists x^A. \Phi &\Leftrightarrow \exists Y. \exists f: Y \rightarrow X. \exists x \in \underline{A}(Y). Y \Vdash_{(\underline{\rho} \cdot f)[x^A := x]} \Phi \\
583 \\
584 \quad X \Vdash_{\underline{\rho}} \forall x^A. \Phi &\Leftrightarrow \forall Y. \forall f: Y \rightarrow X. \forall x \in \underline{A}(Y). Y \Vdash_{(\underline{\rho} \cdot f)[x^A := x]} \Phi \\
585 \\
586 \\
587 \\
588 \\
589
\end{aligned}$$

Fig. 2. Semantics of atomic sheaf logic

590 PROPOSITION 4.6. For any set A and subset $P \subseteq A$, the definitions

$$\begin{aligned}
592 \quad \underline{\Box}P(\Omega) &:= \{X: \Omega \rightarrow A \mid \forall \omega \in \Omega. X(\omega) \in P\} \\
593 \\
594 \quad \underline{\Diamond}P(\Omega) &:= \{X: \Omega \rightarrow A \mid \exists \omega \in \Omega. X(\omega) \in P\}
\end{aligned}$$

595 define subsheaves $\underline{\Box}P$ and $\underline{\Diamond}P$ of $\underline{NV}(A)$ in $\text{Sh}_{\text{at}}(\mathbb{S}\text{ur})$, by Proposition 4.3.

597 This time we omit the proof, since the modality subsheaves will not play any further role in the paper. We mention,
598 however, that the constructions in Proposition 4.6 can be used as the basis for an interesting modal extension of the
600 first-order atomic sheaf logic of $\text{Sh}_{\text{at}}(\mathbb{S}\text{ur})$, in which the modalities mediate between the ordinary first-order logic of
601 variables valued in A and the sheaf logic of nondeterministic variables valued in $\underline{NV}(A)$.

603 Returning to the general semantic interpretation of atomic sheaf logic in $\text{Sh}_{\text{at}}(\mathbb{C})$, the semantics of formulas is given
604 by a forcing relation

$$X \Vdash_{\underline{\rho}} \Phi ,$$

607 where Φ is a formula, X is an object of \mathbb{C} and

$$608 \quad \underline{\rho} \in \prod_{x^A \in \{x_1^{A_1}, \dots, x_n^{A_n}\}} \underline{A}(X)$$

611 is what we call an X -assignment: it maps every variable x^A in a set $\{x_1^{A_1}, \dots, x_n^{A_n}\} \supseteq \text{FV}(\Phi)$ to an element $\underline{\rho}(x^A) \in \underline{A}(X)$,
612 where \underline{A} is the sheaf interpreting the sort A of the variable.

614 The definition of the forcing relation is presented in Fig. 2. In the quantifier clauses, we write $\underline{\rho} \cdot f$ for the
615 Y -assignment $z^B \mapsto \underline{\rho}(z^B) \cdot f$, where $\underline{\rho}$ is an X -assignment and $f: Y \rightarrow X$ is a map in \mathbb{C} ,

617 The clauses for the propositional connectives in Fig. 2 look remarkably simple-minded. They are, nonetheless,
618 equivalent to the more involved clauses that appear in the *sheaf semantics* for logic in a sheaf topos [29]. The simplification
619 in formulation is possible because we are working in the special case of atomic sheaves. The clauses for the existential
620 and universal quantifier are also taken from sheaf semantics, and do not admit further simplification. Their non-local
621 nature (they involve a change of world along $f: Y \rightarrow X$) is the key feature that will give atomic sheaf logic its character,
622 when we later include equivalence and conditional independence formulas.

625 The next results summarise fundamental properties of the forcing relation and the logic it induces. The first is very
 626 basic, but we include it explicitly because the notion of *locality* it addresses, namely the dependency of semantics only
 627 on assignments to the free variables appearing in a formula, has been a delicate issue in the context of (in)dependence
 628 logics.
 629

630 **PROPOSITION 4.7 (LOCALITY).** *For any formula Φ , object X of \mathbb{C} and X -assignments $\underline{\rho}, \underline{\rho}'$ that are defined and coincide*
 631 *on $\text{FV}(\Phi)$.*

$$633 \quad X \Vdash_{\underline{\rho}} \Phi \text{ if and only if } X \Vdash_{\underline{\rho}'} \Phi.$$

635 **PROPOSITION 4.8 (SHEAF PROPERTY).** *For any formula Φ , map $f: Y \rightarrow X$ in \mathbb{C} , and X -assignment $\underline{\rho}$ defined on $\text{FV}(\Phi)$.*

$$637 \quad X \Vdash_{\underline{\rho}} \Phi \text{ if and only if } Y \Vdash_{\underline{\rho} \cdot f} \Phi. \quad (8)$$

639 Proposition 4.8 is called the sheaf property because it is equivalent to the statement that, for every formula Φ with
 640 $\text{FV}(\Phi) \subseteq \{x_1^{A_1}, \dots, x_n^{A_n}\}$, it holds that
 641

$$642 \quad \{(x_1, \dots, x_n) \mid X \Vdash_{x_i^{A_i} \mapsto x_i} \Phi\} \subseteq (A_1 \times \dots \times A_n)(X) \quad (9)$$

644 defines a subsheaf of $A_1 \times \dots \times A_n$ via Proposition 4.3.

645 Propositions 4.7 and 4.8 are both proved by induction on the structure of the formula. We omit the proof of
 646 Proposition 4.7, which is straightforward. Proposition 4.8 asserts that the *monotonicity* and *local character* properties
 647 from [29, §VI.7] hold. In *loc. cit.*, these properties are shown to hold for arbitrary Grothendieck topologies, whereas
 648 Proposition 4.8 concerns just the special case of atomic topologies. Nevertheless, we give a direct proof of Proposition 4.8,
 649 both for the benefit of readers who do not know general sheaf theory, and also to demonstrate the crucial role played
 650 by the confluence property of \mathbb{C} .
 651

654 **PROOF OF PROPOSITION 4.8.** By induction on the structure of Φ .

655 In the case that Φ is an atomic formula of the form $R(x_1^{A_1}, \dots, x_n^{A_n})$, property (8) holds because \underline{R} is a subsheaf of
 656 $A_1 \times \dots \times A_n$.

657 If Φ is an equality $x^A = y^A$, then the left-to-right implication of (8) is immediate. For the right-to-left implication,
 658 suppose $Y \Vdash_{\underline{\rho} \cdot f} x^A = y^A$; that is, $\underline{\rho}(x^A) \cdot f = \underline{\rho}(y^A) \cdot f$. Since \underline{A} is a sheaf, hence separated, we have $\underline{\rho}(x^A) = \underline{\rho}(y^A)$, by
 659 Proposition 3.10. That is, $X \Vdash_{\underline{\rho}} x^A = y^A$, as required.

660 The cases for the propositional connectives are all easy. We note only that, for the cases of negation and implication,
 661 in which there are negated clauses in the definition of the forcing relation (Fig. 2), the induction hypothesis is used in
 662 the opposite direction of (8) to the implication being proved.

663 In the case that Φ is an existentially quantified formula $\exists x^A. \Phi'$, we prove the left-to-right implication of (8).
 664 Accordingly, suppose that $X \Vdash_{\underline{\rho}} \exists x^A. \Phi'$. By the forcing clause for the existential quantifier, there exist $g: Z \rightarrow X$ and
 665 $x \in \underline{A}(Z)$ such that $Z \Vdash_{(\underline{\rho} \cdot g)[x^A := x]} \Phi'$. By confluence, there exists a span $Y \xleftarrow{f'} W \xrightarrow{g'} Z$ such that $g \circ g' = f \circ f'$.
 666 By the induction hypothesis, $W \Vdash_{(\underline{\rho} \cdot g \cdot g')[x^A := x \cdot g']} \Phi'$; i.e., $W \Vdash_{(\underline{\rho} \cdot f \cdot f')[x^A := x \cdot g']} \Phi'$. Whence, by the forcing clause for
 667 the existential quantifier, $Y \Vdash_{\underline{\rho} \cdot f} \exists x^A. \Phi'$, as required. We leave the easier right-to-left implication of (8), which does
 668 not involve confluence, to the reader.

669 The proof for the universal quantifier is similar. (It can also be bypassed, by noting that the forcing interpretation of
 670 $\exists x^A. \Phi'$ is equivalent to that for $\neg \exists x^A. \neg \Phi'$.) \square

677 It is standard that sheaf semantics, for an arbitrary Grothendieck topology, always validates intuitionistic logic. In
 678 the special case of an atomic topology, the *law of excluded middle* $\Phi \vee \neg\Phi$ is also validated, hence atomic sheaf logic is
 679 classical. In more detail, atomic topologies are special cases of dense Grothendieck topologies, and categories of sheaves
 680 for the latter are always boolean, hence classical logic is validated. This whole picture is explained in [29]. We shall not,
 681 however, assume familiarity with this abstract picture. Accordingly, we give a brief, direct explanation of how atomic
 682 sheaf logic validates classical logic.
 683

684 A formula Φ is said to be *true* (*in* $\text{Sh}_{\text{at}}(\mathbb{C})$) *under all assignments* if, for every object X of \mathbb{C} and X -assignments $\underline{\rho}$
 685 defined on $\text{FV}(\Phi)$, it holds that $X \Vdash_{\underline{\rho}} \Phi$.
 686

687
 688 **THEOREM 4.9 (CLASSICAL LOGIC).** *If Φ is a theorem of (multisorted) classical logic then it is true in $\text{Sh}_{\text{at}}(\mathbb{C})$ under all
 689 assignments.*
 690

691
 692 **PROOF (OUTLINE).** It follows trivially from the definition of the forcing relation Fig. 2 that every classical propositional
 693 tautology (including every instance of the law of excluded middle $\Phi \vee \neg\Phi$) is true under all assignments (assuming, as
 694 we do, that we are working in a classical meta-theory).
 695

696 The verification of the validity of the axioms and inference rules pertaining to quantifiers takes a little more work, but
 697 is not difficult. Since we are working in a special case of sheaf semantics, where such facts are anyway well established
 698 in far greater generality, we do not go into details. A sceptical reader may enjoy verifying this for themselves, using
 699 their preferred formulation of the axioms and rules of multi-sorted first-order logic. \square
 700

701
 702 By Theorem 4.9, atomic sheaf logic is just multisorted first-order classical logic with a nonstandard semantics. The
 703 logic includes the equality relation, which is given a canonical interpretation. The nonstandard semantics allows relation
 704 symbols to be interpreted as arbitrary subsheaves of product sheaves. Atomic sheaf categories possess interesting such
 705 subsheaves that have no analogue in the standard semantics of first-order logic. Our main examples of this phenomenon
 706 are the two relations from the title: equivalence and conditional independence.
 707

708 To end this section, we observe that, in the case of our running example $\text{Sh}_{\text{at}}(\mathbb{S}\text{ur})$, atomic sheaf logic can incorporate
 709 the relations of equivalence and conditional independence from multiteam semantics, as in Section 2. Syntactically, we
 710 simply extend the logic with equivalence and conditional independence formulas (1) and (2), as in Section 2. Actually,
 711 we can do this simply by including equivalence and conditional independence as particular relation symbols, so the
 712 equivalence and conditional independence formulas are then instances of atomic formulas of the form $R(x_1^{A_1}, \dots, x_n^{A_n})$.
 713 Specifically, for equivalence, we include relation symbols $\sim_{A_1 \dots A_n}$ with arity($\sim_{A_1 \dots A_n}$) = $A_1 \dots A_n A_1 \dots A_n$. Similarly,
 714 for conditional independence, we include relation symbols $\perp_{A_1 \dots A_l, B_1 \dots B_m | C_1 \dots C_n}$ with arity($\perp_{A_1 \dots A_l, B_1 \dots B_m | C_1 \dots C_n}$) =
 715 $A_1 \dots A_l B_1 \dots B_m C_1 \dots C_n$.
 716

717 To interpret the extended logical language, we instantiate the semantic interpretation of Definition 4.1, in the special
 718 case of the category $\text{Sh}_{\text{at}}(\mathbb{S}\text{ur})$, by requiring that every sort A is interpreted by a sheaf of nondeterministic variables
 719 $\underline{A} := \underline{\text{NV}}(\llbracket A \rrbracket)$ for some set $\llbracket A \rrbracket$. We then interpret each relation $\sim_{A_1 \dots A_n}$ as the subsheaf of $(\prod_{i=1}^n \underline{A}_i) \times (\prod_{i=1}^n \underline{A}_i)$ that
 720 is isomorphic to the subsheaf $\bowtie_{(\prod_{i=1}^n \llbracket A_i \rrbracket)}$ of $\underline{\text{NV}}(\prod_{i=1}^n \llbracket A_i \rrbracket) \times \underline{\text{NV}}(\prod_{i=1}^n \llbracket A_i \rrbracket)$ from Proposition 4.4 along the canonical
 721 isomorphism between the two product sheaves. A similar procedure, using $\perp_{A, B | C}$ from Proposition 4.5, defines the
 722 semantics of conditional independence formulas as subsheaves. These rather convoluted definitions are equivalent to
 723 simply interpreting equivalence and conditional independence formulas directly using the conditions given in Figure 1.
 724 The benefit of the convoluted explanation in terms of subsheaves is that it presents the extended logic as a special
 725

case of general atomic sheaf logic, and in doing so explains why the meta-logical properties (locality, sheaf property, classical logic) hold for the extended logic.

5 Atomic equivalence

The interpretation of equivalence formulas at the end of Section 4 was given only for the relation of equiextension of nondeterministic variables, interpreted over the sheaves of nondeterministic variables in $\text{Sh}_{\text{at}}(\text{Sur})$ using Proposition 4.4.

Atomic sheaves offer, however, a much more general perspective on the notion of equivalence. Every category $\text{Sh}_{\text{at}}(\mathbb{C})$ of atomic sheaves possesses a canonical notion of equivalence, which we call *atomic equivalence*. Specifically, for every sheaf \underline{P} , there is an associated subsheaf $\sim_{\underline{P}} \subseteq \underline{P} \times \underline{P}$ that is an equivalence relation in $\text{Sh}_{\text{at}}(\mathbb{C})$. (A subsheaf $\underline{E} \subseteq \underline{P} \times \underline{P}$ is an *equivalence relation* in $\text{Sh}_{\text{at}}(\mathbb{C})$ if $\underline{E}(X) \subseteq \underline{P}(X) \times \underline{P}(X)$ is an equivalence relation, for every $X \in \mathbb{C}$.)

THEOREM 5.1 (ATOMIC EQUIVALENCE). *Let \underline{P} be any sheaf in $\text{Sh}_{\text{at}}(\mathbb{C})$.*

$$\sim_{\underline{P}}(X) := \{(x, x') \in \underline{P}(X) \times \underline{P}(X) \mid \exists Z, \exists u, u' : Z \rightarrow X. x \cdot u = x' \cdot u'\}$$

defines a subsheaf $\sim_{\underline{P}} \subseteq \underline{P} \times \underline{P}$ via Proposition 4.3. Moreover, this is an equivalence relation in $\text{Sh}_{\text{at}}(\mathbb{C})$.

PROOF. For the subpresheaf property, suppose $(x, x') \in \sim_{\underline{P}}(X)$. Thus, for some $u, u' : Z \rightarrow X$, we have $x \cdot u = x' \cdot u'$. Consider any $f : Y \rightarrow X$. By coconfluence, there exist $g : W \rightarrow Z$ and $v : W \rightarrow Y$ such that $f \circ v = u \circ g$. Similarly, there exist $g' : W' \rightarrow Z$ and $v' : W' \rightarrow Y$ such that $f \circ v' = u' \circ g'$. Again by coconfluence, there exist $h : V \rightarrow W$ and $h' : V \rightarrow W'$ such that $g \circ h = g' \circ h'$. Then:

$$x \cdot f \cdot v \cdot h = x \cdot u \cdot g \cdot h = x' \cdot u' \cdot g' \cdot h' = x' \cdot f \cdot v' \cdot h' .$$

So $v \circ h$ and $v' \circ h' : V \rightarrow Y$ show that $(x, x') \in \sim_{\underline{P}}(Y)$.

For the subsheaf property, consider any $(x, x') \in \underline{P}(X) \times \underline{P}(X)$ and $f : Y \rightarrow X$ such that $(x \cdot f, x' \cdot f) \in \sim_{\underline{P}}(Y)$; i.e., there exist $u, u' : Z \rightarrow Y$ such that $x \cdot f \cdot u = x' \cdot f \cdot u'$. Thus $f \circ u$ and $f \circ u' : Z \rightarrow X$ show that indeed $(x, x') \in \sim_{\underline{P}}(X)$.

For the equivalence relation property, reflexivity and symmetry are trivial. For transitivity, suppose $(x, x') \in \sim_{\underline{P}}(X)$ and $(x', x'') \in \sim_{\underline{P}}(X)$; i.e., there exist $u, u' : Z \rightarrow X$ such that $x \cdot u = x' \cdot u'$ and $v, v' : Z' \rightarrow X$ such that $x' \cdot v = x'' \cdot v'$. By coconfluence, there exist $w : W \rightarrow Z$ and $w' : W' \rightarrow Z'$ such that $u' \circ w = v \circ w'$. Then

$$x \cdot u \cdot w = x' \cdot u' \cdot w = x' \cdot v \cdot w' = x'' \cdot v' \cdot w' .$$

So $u \circ w$ and $v' \circ w'$ show that $(x, x'') \in \sim_{\underline{P}}(X)$. □

In the special case of sheaves $\underline{\text{NV}}(A)$ of nondeterministic variables in $\text{Sh}_{\text{at}}(\text{Sur})$, the canonical equivalence $\sim_{\underline{\text{NV}}(A)}$ coincides with the equiextension subsheaf \bowtie_A defined in Proposition 4.4.

PROPOSITION 5.2. *The subsheaf $\sim_{\underline{\text{NV}}(A)} \subseteq \underline{\text{NV}}(A) \times \underline{\text{NV}}(A)$ in $\text{Sh}_{\text{at}}(\text{Sur})$ coincides with $\bowtie_A \subseteq \underline{\text{NV}}(A) \times \underline{\text{NV}}(A)$.*

PROOF. Consider any $X, X' : \Omega \rightarrow A$.

Suppose there exist $u, u' : \Omega' \rightarrow \Omega$ such that $X \cdot u = X' \cdot u'$; i.e., $X \circ u = X' \circ u'$. Then $X \bowtie X'$ because

$$X(\Omega) = X(u(\Omega')) = X'(u'(\Omega')) = X'(\Omega) ,$$

using the surjectivity of u and u' for the first and last equalities.

Conversely, suppose $X \bowtie X'$, i.e., $X(\Omega) = X'(\Omega)$. Define $\Omega_A := X(\Omega)$, which is a finite nonempty set hence (up to isomorphism) an object of Sur . The functions X and X' are surjective from Ω to Ω_A , hence give morphisms

$$\begin{aligned}
781 \quad & \vec{x} \sim \vec{x} & (10) \\
782 \quad & \vec{x} \sim \vec{y} \rightarrow \vec{y} \sim \vec{x} & (11) \\
783 \quad & \vec{x} \sim \vec{y} \wedge \vec{y} \sim \vec{z} \rightarrow \vec{x} \sim \vec{z} & (12) \\
784 \quad & \vec{x} \sim \vec{y} \rightarrow \pi(\vec{x}) \sim \pi(\vec{y}) & (13) \\
785 \quad & \vec{x}, x \sim \vec{y}, y \rightarrow \vec{x} \sim \vec{y} & (14) \\
786 \quad & \vec{x} \sim \vec{y} \wedge \Phi(\vec{x}) \rightarrow \Phi(\vec{y}) & (15) \\
787 \quad & \vec{x} \sim \vec{x}' \rightarrow \exists y'. (\vec{x}, y \sim \vec{x}', y') & (16)
\end{aligned}$$

Fig. 3. Axioms for equivalence

795 $X, X' : \Omega \rightarrow \Omega_A$ in $\mathbb{S}\text{ur}$. By confluence, there exist maps $p, q : \Omega' \rightarrow \Omega$ such that $X \circ p = X' \circ q$. But this means that
796 $X \cdot p = X' \cdot q$, hence $(X, X') \in \sim_{\underline{\text{NV}}(A)}(\Omega)$. \square

797 Using the notion of atomic equivalence, we give a canonical semantics to equivalence formulas (1) in any atomic sheaf
798 topos. As at the end of Section 4, we include such formulas by considering them as given by relation symbols $\sim_{A_1 \dots A_n}$
799 with arity $(\sim_{A_1 \dots A_n}) = A_1 \dots A_n A_1 \dots A_n$. The general semantic interpretation of sorts and relations (Definition 4.1) is
800 then extended to require that each relation symbol $\sim_{A_1 \dots A_n}$ is interpreted as the subsheaf
801

$$802 \quad \underline{\sim_{A_1 \dots A_n}} := \underline{\sim_{A_1 \times \dots \times A_n}} \subseteq (\underline{A_1} \times \dots \times \underline{A_n}) \times (\underline{A_1} \times \dots \times \underline{A_n}) .$$

803 The forcing relation $X \Vdash_{\underline{\rho}} x_1^{A_1}, \dots, x_n^{A_n} \sim y_1^{A_1}, \dots, y_n^{A_n}$ is then covered by the general clause for relation symbols R in
804 Figure 2. This is equivalent to defining:

$$805 \quad X \Vdash_{\underline{\rho}} x_1^{A_1}, \dots, x_n^{A_n} \sim y_1^{A_1}, \dots, y_n^{A_n} \Leftrightarrow ((\underline{\rho}(x_1^{A_1}), \dots, \underline{\rho}(x_n^{A_n})), (\underline{\rho}(y_1^{A_1}), \dots, \underline{\rho}(y_n^{A_n}))) \in \sim_{A_1 \times \dots \times A_n}(X).$$

806 By Proposition 5.2, the above definition generalises the multiteam interpretation of independence as the equiextension
807 relation, in the case $\mathbb{C} = \mathbb{S}\text{ur}$ and $\underline{A} = \underline{\text{NV}}(\llbracket A \rrbracket)$, that was given in Section 4.

808 We now explore the logic of atomic equivalence, valid in any category of atomic sheaves. Fig. 3 lists formulas that are
809 valid in our semantics, which we identify as axioms for equivalence. In them, we have abbreviated variable sequences
810 by vectors. It is implicitly assumed that the lengths and sorts of the variable sequences match so that the equivalence
811 formulas are legitimate. Axioms (10)–(12) simply state that \sim is an equivalence relation. The next two assert structural
812 properties. In (13), π is any permutation of the variable sequence, and the axiom asserts that equivalence is preserved
813 if one permutes variables in the same way on both sides. By axiom (14), equivalence is also preserved if one drops
814 identically positioned variables from both sides. Axiom (15) is more interesting: equivalence enjoys a substitutivity
815 property, similar to the substitutivity property of equality. However, an important restriction is hidden in the notation.
816 It is assumed that all free variables in Φ are contained in a sequence \vec{z} of *distinct* variables matching in length and
817 sorting with \vec{x} , and hence also with \vec{y} . We then write $\Phi(\vec{x})$ for the substitution $\Phi(\vec{x}/\vec{z})$, and similarly for $\Phi(\vec{y})$. We
818 call (15) the *invariance principle*, as it states that properties not involving extraneous variables are invariant under
819 equivalence. Axiom (16) is called the *transfer principle*. If \vec{x} and \vec{x}' are jointly equivalent, then for any variable y there
820 exists a (necessarily equivalent) variable y' such that \vec{x}, y and \vec{x}', y' are jointly equivalent.

821 This soundness of axioms (10) to (14) is straightforward. The soundness of the invariance principle (15) is a conse-
822 quence of the following simple lemma.

LEMMA 5.3. For any $\underline{P} \in \text{Sh}_{\text{at}}(\mathbb{C})$ with subsheaf $\underline{Q} \subseteq \underline{P}$. If $x, x' \in \underline{P}(X)$ are such that $(x, x') \in \sim_{\underline{P}}(X)$ and $x \in \underline{Q}(X)$ then $x' \in \underline{Q}(X)$.

PROOF. Because $(x, x') \in \sim_{\underline{P}}(X)$, we have that there exist $u, u' : Y \rightarrow X$ such that $x \cdot u = x' \cdot u'$. As $x \in \underline{Q}(X)$ and \underline{Q} is a subpresheaf, we have $x \cdot u \in \underline{Q}(Y)$, that is $x' \cdot u' \in \underline{Q}(Y)$. Hence, since \underline{Q} is a subsheaf, $x' \in \underline{Q}(X)$. \square

The invariance principle follows from the lemma, because Φ defines a subsheaf of $\underline{A}_1 \times \cdots \times \underline{A}_n$ via (9), where A_1, \dots, A_n are the sorts of the vector $\vec{x} = x_1^{A_1}, \dots, x_n^{A_n}$ (and hence also of \vec{y}) in (15).

The soundness of the transfer principle (16) is a consequence of the lemma below.

LEMMA 5.4. Let $\underline{P}, \underline{Q}$ be sheaves and let $x, x' \in P(X)$ such that $(x, x') \in \sim_{\underline{P}}(X)$. For any $y \in P(X)$, there exists $p : Z \rightarrow X$ and $y' \in \underline{Q}(Z)$ such that $((x \cdot p, y \cdot p), (x' \cdot p, y')) \in \sim_{\underline{P} \times \underline{Q}}(Z)$.

PROOF. Since $(x, x') \in \sim_{\underline{P}}(X)$, there exist maps $u, u' : Y \rightarrow X$ such that $x \cdot u = x' \cdot u'$. By coconfluence, let $v, v' : Z \rightarrow Y$ be such that $u \circ v = u' \circ v'$. Define $p := u \circ v$ and $y' := y \cdot u \cdot v'$. By coconfluence again, let $w, w' : W \rightarrow Z$ be such that $w \circ v = w' \circ v'$. Then w, w' show that $((x \cdot p, y \cdot p), (x' \cdot p, y')) \in \sim_{\underline{P} \times \underline{Q}}(Z)$, because:

$$x \cdot p \cdot w = x \cdot u \cdot v \cdot w = x' \cdot u' \cdot v' \cdot w' = x' \cdot u \cdot v \cdot w' = x' \cdot p \cdot w'$$

and

$$y \cdot p \cdot w = y \cdot u \cdot v \cdot w = y \cdot u \cdot v' \cdot w' = y' \cdot w' .$$

\square

6 Independent pullbacks

Whereas Section 5 has given equivalence formulas a canonical interpretation in an arbitrary atomic sheaf topos $\text{Sh}_{\text{at}}(\mathbb{C})$, the interpretation of conditional independence formulas (seemingly) requires additional structure on the generating category \mathbb{C} . Primary amongst this is that \mathbb{C} possess *independent pullbacks*, as defined below.

Definition 6.1 (Independent pullbacks). A system of *Independent pullbacks* on a category \mathbb{C} is given by a collection of commuting squares in \mathbb{C} , called *independent squares*. A commuting square

$$\begin{array}{ccc} X & \xrightarrow{f} & Y \\ g \downarrow & & \downarrow u \\ Z & \xrightarrow{v} & W \end{array} \tag{17}$$

is then defined to be an *independent pullback* if it is independent and it satisfies the usual pullback property restricted to independent squares; i.e., for every independent square

$$\begin{array}{ccc} X' & \xrightarrow{f'} & Y \\ g' \downarrow & & \downarrow u \\ Z & \xrightarrow{v} & W \end{array}$$

there exists a unique $q : X' \rightarrow X$ such that $f \circ p = f'$ and $g' \circ p = g$. The assumed collection of independent squares and derived collection of independent pullbacks are together required to satisfy the five conditions below.

885 (IP1) Every commuting square of the form below is independent.

$$\begin{array}{ccc} X & \longrightarrow & Y \\ \downarrow & & \downarrow \\ Z & \xrightarrow{\text{id}_Z} & Z \end{array}$$

891 (IP2) If the left square below is independent then so is the right.

$$\begin{array}{ccc} X & \xrightarrow{f} & Y & \quad X & \xrightarrow{g} & Z \\ g \downarrow & & \downarrow u & f \downarrow & & \downarrow v \\ Z & \xrightarrow{v} & W & Y & \xrightarrow{u} & W \end{array}$$

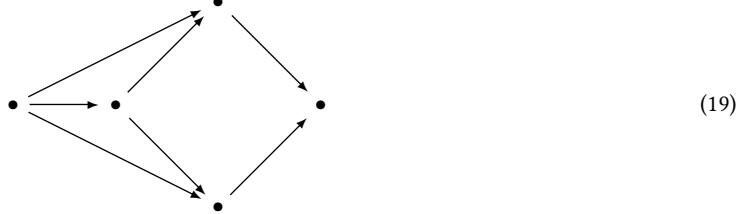
898 (IP3) If (A) and (B) below are independent, then so is the composite rectangle (AB).

$$\begin{array}{ccccc} X & \xrightarrow{s} & Y & \xrightarrow{t} & Z \\ p \downarrow & (A) & q \downarrow & (B) & r \downarrow \\ U & \xrightarrow{u} & V & \xrightarrow{v} & W \end{array} \tag{18}$$

905 (IP4) If the composite rectangle (AB) above is independent and (B) is an independent pullback then (A) is
906 independent.

907 (IP5) Every cospan $Y \xrightarrow{u} W \xleftarrow{v} Z$ has a completion to a commuting square (17) that is an independent pullback.

909 It is an easy consequence of axioms (IP1) and (IP3) that, in any commuting diagram as below, if the right square is
910 independent then so is the outer kite.



912 A straightforward consequence of this property in turn is that, in any independent pullback square (17), the span f, g is
913 jointly monic, i.e., for all parallel pairs $s, t : V \rightarrow X$, if both $f \circ s = f \circ t$ and $g \circ s = g \circ t$ then $s = t$.

922 *Definition 6.2 (Descent property).* We say that independent-pullback structure has the *descent property* if, in any
923 commuting diagram of the form (19) above, if the outer kite is independent then so is the right-hand square.

925 As a first (trivial) example of independent pullbacks, in any category \mathbb{C} with pullbacks the collection of all commuting
926 squares defines an independent pullback structure on \mathbb{C} satisfying the descent property, for which the independent
927 pullbacks are exactly the pullbacks. The category \mathbb{Sur} (which does not have pullbacks) provides a nontrivial example.

930 *Definition 6.3 (Independent square in \mathbb{Sur}).* Define a commuting square in \mathbb{Sur}

$$\begin{array}{ccc} \Omega_X & \xrightarrow{p} & \Omega_Y \\ q \downarrow & & \downarrow r \\ \Omega_Z & \xrightarrow{s} & \Omega_W \end{array}$$

937 to be *independent* if $p \perp\!\!\!\perp q \mid r \circ p$, using conditional independence of nondeterministic variables (Definition 2.2).

938

939 PROPOSITION 6.4. *Definition 6.3 endows $\mathbb{S}\text{ur}$ with independent pullback structure satisfying the descent property.*

940

941 PROOF. Because the square is commuting and the maps are surjective, the condition of Definition 2.2 simplifies
942 to: for all $\omega_Y \in \Omega_Y$ and $\omega_Z \in \Omega_Z$, we have $r(\omega_Y) = s(\omega_Z)$ implies there exists $\omega_X \in \Omega_X$ such that $p(\omega_X) = \omega_Y$ and
943 $q(\omega_X) = \omega_Z$.

944 The easy verification of properties (IP1) and (IP2) is left to the reader.

945 For (IP3), suppose (A) and (B) in diagram (18) are independent. We show that $t \circ s \perp\!\!\!\perp p \mid r \circ t \circ s$, using the characterisation
946 above. Accordingly, suppose $\omega_Z \in \Omega_Z$ and $\omega_U \in \Omega_U$ are such that $r(\omega_Z) = v(u(\omega_U))$. We need to find $\omega_X \in \Omega_X$ such that
947 that $t(s(\omega_X)) = \omega_Z$ and $p(\omega_X) = \omega_U$. Because $r(\omega_Z) = v(u(\omega_U))$, the independence of (B) gives us $\omega_Y \in \Omega_Y$ such that
948 $t(\omega_Y) = \omega_Z$ and $q(\omega_Y) = u(\omega_U)$. By the latter equation and the independence of (A), there exists $\omega_X \in \Omega_X$ such that
949 $s(\omega_X) = \omega_Y$ and $p(\omega_X) = \omega_U$. We then have $t(s(\omega_X)) = t(\omega_Y) = \omega_Z$ as required.

950 For (IP4), we verify the stronger property that if the composite rectangle (AB) in diagram (18) is independent and if t, q
951 are jointly monic then (A) is independent. In the category $\mathbb{S}\text{ur}$ the joint monicity of t, q means that, for all $\omega_Y, \omega'_Y \in \Omega_Y$,
952 if both $t(\omega_Y) = t(\omega'_Y)$ and $q(\omega_Y) = q(\omega'_Y)$ then $\omega_Y = \omega'_Y$. To prove that (A) is independent, suppose $\omega_Y \in \Omega_Y$ and
953 $\omega_U \in \Omega_U$ are such that $q(\omega_Y) = u(\omega_U)$. Then $r(t(\omega_Y)) = v(q(\omega_Y)) = v(u(\omega_U))$. So, by the independence of (AB), there
954 exists $\omega_X \in \Omega_X$ such that $t(s(\omega_X)) = t(\omega_Y)$ and $p(\omega_X) = \omega_U$. We then have $q(s(\omega_X)) = u(p(\omega_X)) = u(\omega_U) = q(\omega_Y)$.
955 It follows, by the joint monicity of t, q , that $s(\omega_X) = \omega_Y$. Together with the equation $p(\omega_X) = \omega_U$, this verifies the
956 independence of (A).

957 For (IP5), the construction in the proof of Proposition 3.5 completes any cospan to an independent pullback square,
958 as is easily verified.

959 We leave the straightforward verification of the descent property to the reader. \square

960 A more abstract way of describing the independent pullback structure on $\mathbb{S}\text{ur}$ is that a commuting square in $\mathbb{S}\text{ur}$ is
961 independent if and only if it is a weak² pullback in **Set**, and it is an independent pullback if and only if it is a pullback
962 in **Set**. One can use this to give a more abstract verification that (IP1)–(IP5) and descent hold.

963 We end this section with some general consequences of the definition of independent pullback structure. The first
964 such consequence is that an analogue of the pullback lemma holds for independent pullbacks.

965

966 LEMMA 6.5 (INDEPENDENT-PULLBACK LEMMA). *Suppose \mathbb{C} has independent pullback structure.*

967 (1) *If (A) and (B) in (18) are both independent pullbacks then so is the composite rectangle (AB).*
968 (2) *If (B) and the composite rectangle (AB) in (18) are both independent pullbacks then so is (A).*

969 PROOF. The proof has the same structure as that of the standard pullback lemma, with the additional burden of
970 having to verify that various commuting squares are independent. We give the proof of statement 1 insofar as it involves
971 independence properties, leaving the standard uniqueness argument and the proof of statement 2 to the reader.

972 Suppose (A) and (B) are independent pullbacks. We need to verify that (AB) is an independent pullback. Accordingly,
973 suppose that $z : T \rightarrow Z$ and $w : T \rightarrow U$ are such that the top square in the diagram below is independent. We need to

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

²A *weak limit* is a cone that enjoys the existence property but not necessarily the uniqueness property of a limit.

989 show that there exists a unique map $x : T \rightarrow X$ such that $p \circ x = w$ and $t \circ s \circ x = z$.

$$\begin{array}{ccc}
 T & \xrightarrow{z} & Z \\
 w \downarrow & & \downarrow r \\
 U & \xrightarrow{v \circ u} & W \\
 u \downarrow & & \downarrow \text{id}_W \\
 V & \xrightarrow{v} & W
 \end{array}$$

1000 By axioms (IP1) and (IP2), the bottom square above is independent, hence, by (IP2) and (IP3), so is the composite
 1001 rectangle. Since (B) is an independent pullback, there exists a unique $y : T \rightarrow Y$ such that $t \circ y = z$ and $q \circ y = u \circ w$.
 1002 This means that the top square in the diagram above factorises as

$$\begin{array}{ccccc}
 T & \xrightarrow{y} & Y & \xrightarrow{t} & Z \\
 w \downarrow & & \downarrow q & & \downarrow r \\
 U & \xrightarrow{u} & V & \xrightarrow{v} & W
 \end{array}$$

1009 Since the composite rectangle is independent and the right-hand square is (B), which is an independent pullback, the
 1010 left-hand square is independent by (IP4). Since (A) is an independent pullback, there exists a unique $x : T \rightarrow X$ such
 1011 that $p \circ x = w$ and $s \circ x = y$, whence $t \circ s \circ x = t \circ y = z$. The proof that x is the unique map satisfying $p \circ x = w$ and
 1012 $t \circ s \circ x = z$ then proceeds as usual. \square

1015 By axiom (IP5), any category with independent pullbacks is *a fortiori* coconfluent, hence we can consider the category
 1016 $\text{Sh}_{\text{at}}(\mathbb{C})$ of atomic sheaves, for small such \mathbb{C} . The remaining results in this section demonstrate a pleasing interplay
 1017 between atomic sheaves and independent pullback structure. They are aimed at readers who are interested in the
 1018 general category-theoretic framework. Readers keen to arrive at the atomic sheaf logic of conditional independence
 1019 may prefer to skip to the next section.

1023 **THEOREM 6.6.** *Suppose \mathbb{C} is a small category with independent pullback structure. The following are equivalent, for
 1024 every $P \in \text{Psh}(\mathbb{C})$.*

1026 (1) *P is an atomic sheaf*
 1027 (2) *P maps independent squares in \mathbb{C} to pullbacks in **Set**.*

1030 Note that, by contravariance, P maps an independent square of the form (17) to a pullback square in **Set** with apex PW .

1031 The proof of Theorem 6.6 is an adaptation to the axiomatic structure of independent pullbacks of a standard argument
 1032 (see, e.g., [23, A 2.1.11(h)]) that sheaves in the Schanuel topos can be characterised as pullback preserving functors from
 1033 the category \mathbb{I} of finite sets and injective functions to **Set**.

1037 **PROOF.** For the (1) \Rightarrow (2) implication, suppose that P is an atomic sheaf. We first show that P maps independent
 1038 pullbacks in \mathbb{C} to pullbacks in **Set**. Consider any independent pullback of the form (17). We need to show that the square

1041 below is a pullback in **Set**.

$$\begin{array}{ccc} P(X) & \xleftarrow{(-)\cdot f} & P(Y) \\ (-)\cdot g \uparrow & & \uparrow (-)\cdot u \\ P(Z) & \xleftarrow{(-)\cdot v} & P(W) \end{array}$$

1048 Accordingly, let $y \in P(Y)$ and $z \in P(Z)$ be such that $y \cdot f = z \cdot g$. We need to show that there exists a unique $w \in P(W)$
1049 such that $w \cdot u = y$ and $w \cdot v = z$.

1050 We show that z is v -invariant. Let $s, t : T \rightarrow Z$ be such that $v \circ s = v \circ t$. By the independent-pullback lemma,
1051 we can construct an independent pullback of u along $v \circ s = v \circ t$, either by composing the independent pullback (17)
1052 with the independent pullback of g along s , or by composing (17) with the independent pullback of g along t . By a
1053 straightforward argument, this means the independent pullbacks of g along s and t can be given the same left edge g'
1054 as in the diagram below, which comprises three independent pullback squares (one with f and v , one with s' and s and
1055 one with t' and t).

$$\begin{array}{ccccc} S & \xrightarrow{s'} & X & \xrightarrow{f} & Y \\ g' \downarrow & t' \downarrow & g \downarrow & & u \downarrow \\ T & \xrightarrow{s} & Z & \xrightarrow{v} & W \end{array}$$

1063 We have:

$$1064 z \cdot s \cdot g' = z \cdot g \cdot s' = y \cdot f \cdot s' = y \cdot f \cdot t' = z \cdot g \cdot t' = z \cdot t \cdot g' .$$

1065 Since P is separated (Definition 3.9) it follows that $z \cdot s = z \cdot t$. Thus z is indeed v -invariant.

1066 By the sheaf property there exists $w \in P(W)$ such that $z = w \cdot v$. Then:

$$1067 w \cdot u \cdot f = w \cdot v \cdot g = z \cdot g = y \cdot f .$$

1068 So, by separatedness, we have found w such that $w \cdot u = y$ and $w \cdot v = z$. Such a w is unique by separatedness.

1069 Having established that P maps independent pullbacks in \mathbb{C} to pullbacks in **Set**, we show that it more generally maps
1070 all independent squares to pullbacks. Accordingly, suppose (17) is an independent square. By taking the independent
1071 pullback of u along v , we can obtain (17) as a composite:

$$\begin{array}{ccccc} X & \xrightarrow{s} & S & \xrightarrow{p} & Y \\ g \downarrow & & q \downarrow & & u \downarrow \\ Z & \xrightarrow{\text{id}_Z} & Z & \xrightarrow{v} & W \end{array}$$

1072 Since the right-hand square is an independent pullback, it is mapped by P to a pullback in **Set**. The left-hand square is
1073 mapped by P to a commuting square in **Set** with an identity in a position that makes it a trivial pullback. Thus P maps
1074 the composite square (17) to a composition of pullbacks, hence to a pullback.

1093 For the (2) \Rightarrow (1) implication, let $y \in P(Y)$ and $r: Y \longrightarrow X$ in \mathbb{C} be such that y is r -invariant. Consider an
 1094 independent pullback of r along itself
 1095

$$\begin{array}{ccc} Z & \xrightarrow{p} & Y \\ q \downarrow & & \downarrow r \\ Y & \xrightarrow{r} & X \end{array}$$

1101 Because y is r -invariant, $y \cdot p = y \cdot q$. By assumption, P maps the above square to a pullback in **Set**. Hence, there exists a
 1102 unique $x \in P(X)$ such that $y = x \cdot r$, as required by the sheaf property. \square
 1103

1104 COROLLARY 6.7. *The functor $\text{ay} : \mathbb{C} \rightarrow \text{Sh}_{\text{at}}(\mathbb{C})$ maps independent squares in \mathbb{C} to pushouts in $\text{Sh}_{\text{at}}(\mathbb{C})$.*

1106 PROOF. This is a straightforward consequence of Theorem 6.6 on account of the bijections

$$\text{Sh}_{\text{at}}(\text{ay}(X), \underline{A}) \cong \text{Psh}(y(X), \underline{A}) \cong \underline{A}(X) ,$$

1110 natural in X and \underline{A} , given by the left-adjoint property of the associated sheaf functor and by the Yoneda lemma.
 1111

1112 In more detail, consider any independent square in \mathbb{C} of the form (17). Suppose we have maps β and γ in $\text{Sh}_{\text{at}}(\mathbb{C})$
 1113 making the outside kite below commute.

$$\begin{array}{ccccc} \text{ay}(X) & \xrightarrow{\text{ay}(f)} & \text{ay}(Y) & & \\ \text{ay}(g) \downarrow & & \text{ay}(u) \downarrow & & \\ \text{ay}(Z) & \xrightarrow{\text{ay}(v)} & \text{ay}(W) & \xrightarrow{\beta} & \underline{A} \\ & \searrow \gamma & \swarrow \alpha & & \\ & & \underline{A} & & \end{array}$$

1114 The natural bijections above mean that β and γ correspond respectively to $y \in \underline{A}(Y)$ and $z \in \underline{A}(Z)$ satisfying $y \cdot f = g \cdot v$.
 1115 Since, by Theorem 6.6, \underline{A} maps the square (17) to a pullback in **Set**, there exists a unique $w \in \underline{A}(W)$ such that $w \cdot u = y$
 1116 and $w \cdot v = z$. Translating back along the natural bijections, there exists a unique map $\alpha: \text{ay}(W) \longrightarrow \underline{A}$ such that
 1117 $\alpha \cdot \text{ay}(u) = \beta$ and $\alpha \cdot \text{ay}(v) = \gamma$, as required. \square
 1118

1119 COROLLARY 6.8. *The following are equivalent for a small category \mathbb{C} with independent pullbacks.*

- 1120 (1) *Every representable presheaf is an atomic sheaf.*
- 1121 (2) *Every independent square in \mathbb{C} is a pushout.*

1122 PROOF. For the (1) \Rightarrow (2) direction, suppose every representable is an atomic sheaf. Then ay and y are naturally
 1123 isomorphic, hence $\text{ay} : \mathbb{C} \rightarrow \text{Sh}_{\text{at}}(\mathbb{C})$ is full and faithful. As a fully faithful functor, ay reflects (co)limits in general, and
 1124 so pushouts in particular. Thus independent squares are pushouts in \mathbb{C} by Corollary 6.7.

1125 For the (2) \Rightarrow (1) direction, it holds from the definition of $y(X)$ as $\mathbb{C}(-, X)$ that every representable presheaf
 1126 $y(X) : \mathbb{C}^{\text{op}} \rightarrow \text{Set}$ maps any colimit of a D -shaped diagram in \mathbb{C} to a limit of the induced D^{op} -shaped diagram in **Set**.
 1127 In particular, $y(X)$ maps pushouts in \mathbb{C} to pullbacks in **Set**. So, if every independent square is a pushout in \mathbb{C} , then
 1128 representables map independent squares to pullbacks in **Set**, and it follows from Theorem 6.6 that representables are
 1129 atomic sheaves. \square
 1130

1145 **7 Atomic conditional independence**

1146 A main goal of this section is to define a canonical subsheaf $\llbracket \underline{A}, \underline{B} \mid \underline{C} \rrbracket \subseteq \underline{A} \times \underline{B} \times \underline{C}$ representing a conditional independence relation between sheaves $\underline{A}, \underline{B}, \underline{C}$ in atomic sheaf toposes $\text{Sh}_{\text{at}}(\mathbb{C})$. To achieve this, we shall require that \mathbb{C} have 1147
1148 independent pullbacks. We shall also need to assume that the sheaves $\underline{A}, \underline{B}, \underline{C}$ enjoy the special property of having 1149
1150 *supports*, a notion that we now define.

1151 *Definition 7.1 (Supports).* A *representable factorisation* of an element $x \in P(X)$, where $P \in \text{Psh}(\mathbb{C})$, is given by a triple 1152
1153 (Y, q, y) such that: $q : X \rightarrow Y$ is a map in \mathbb{C} , we have $y \in P(Y)$ and $x = y \cdot q$. A *morphism* from one representable 1154
1155 factorisation (Y, q, y) of x to another (Y', q', y') is given by a map $r : Y \rightarrow Y'$ in \mathbb{C} such that $r \circ q = q'$ and $y' \cdot r = y$. A 1156
1157 representable factorisation (Y, q, y) is called a *support* for x when it is a terminal object in the category of representable 1158
1159 factorisations of x . A presheaf $P \in \text{Psh}(\mathbb{C})$ is said to have *supports* if, for every $X \in \mathbb{C}$, it holds that every $x \in P(X)$ has 1160
1161 a support.

1162 For readers familiar with the *category of elements* $\int P$ of a presheaf P , we remark that a support for $x \in P(X)$ is the 1163 same thing as a terminal object in the co-slice category $(X, x)/\int P$. This elegant formulation is used as the definition of 1164 support in [28] (there called *minimal support*).

1165 **LEMMA 7.2.** Suppose all maps in \mathbb{C} are epimorphic and that $P \in \text{Psh}(\mathbb{C})$ has supports. Then, for any $x \in P(X)$ and map 1166 $Y \xrightarrow{q} X$ in \mathbb{C} , a representable factorisation (Z, t, z) of x is a support for x if and only if $(Z, t \circ q, z)$ is a support for $x \cdot q$.

1167 **PROOF.** Suppose (Z, t, z) is a support for x . Let (W, u, w) be a support for $x \cdot q$. Because $(Z, t \circ q, z)$ is a representable 1168 factorisation of $x \cdot q$, there exists a unique map $r : Z \rightarrow W$ that is a morphism from $(Z, t \circ q, z)$ to (W, u, w) . Then 1169
1170 $(W, r \circ t, w)$ is a representable factorisation of x . So there exists a unique map $s : W \rightarrow Z$ that is a morphism from 1171
1172 $(W, r \circ t, w)$ to (Z, t, z) . That is, r is the unique map such that $r \circ t \circ q = u$ and $w \cdot r = z$, and s is the unique map 1173
1174 such that $s \circ r \circ t = t$ and $z \cdot s = w$. Since t is an epi, the equation $s \circ r \circ t = t$ implies $s \circ r = \text{id}_Z$. Then we have 1175
1176 $t \circ q = s \circ r \circ t \circ q = s \circ u$, which means that s is a morphism of $x \cdot q$ factorisations from (W, u, w) to $(Z, t \circ q, z)$. So 1177
1178 $r \circ s$ is a morphism from (W, u, w) to itself. Since (W, u, w) is the terminal $x \cdot q$ factorisation, $r \circ s = \text{id}_W$. Thus r and s 1179
1180 are mutual inverses, and t is an isomorphism of $x \cdot q$ factorisations from (W, u, w) to $(Z, t \circ q, z)$. Hence $(Z, t \circ q, z)$ is 1181
1182 also a support for $x \cdot q$.

1183 Conversely, suppose $(Z, t \circ q, z)$ is a support for $x \cdot q$. Let (V, v, w) be a representable factorisation of x . Then 1184
1185 $(V, v \circ q, w)$ is a representable factorisation of $x \cdot q$. So there exists a unique map $s : W \rightarrow Z$ that is a morphism from 1186
1187 $(V, v \circ q, w)$ to $(Z, t \circ q, z)$, that is, $s \circ v \circ q = t \circ q$ and $z \cdot s = w$. Since q is an epi, $s \circ v = t$, and so s is a (clearly unique) 1188
1189 morphism from (V, v, w) to (Z, t, z) . This shows that (Z, t, z) is a support for x . \square

1190 We shall also require presheaves with supports to be closed under finite products. This follows from a further 1191
1192 property of the category \mathbb{C} (dual to the existence of \mathcal{M} -images as defined in [41, §5.1]).

1193 *Definition 7.3 (Pairings).* A *pair factorisation* of a span $Y \xleftarrow{f} X \xrightarrow{g} Z$ in a category \mathbb{C} is given by (X', q', f', g') 1194
1195 where $q' : X \rightarrow X'$ and $Y \xleftarrow{f'} X' \xrightarrow{g'} Z$ are maps in \mathbb{C} that satisfy $f' \circ q' = f$ and $g' \circ q' = g$. A *morphism* from a 1196
1197 pair factorisation (X', q', f', g') of f, g to another (X'', q'', f'', g'') is a map $r : X' \rightarrow X''$ in \mathbb{C} such that $r \circ q' = q''$, 1198
1199 $f'' \circ r = f'$ and $g'' \circ r = g'$. A pair factorisation (X', q', f', g') is said to be a *pairing* for f, g if it is a terminal object in 1200
1201 the category of pair factorisations of f, g . We say that the category \mathbb{C} has *pairings* if every span f, g has a pairing.

1202 *PROPOSITION 7.4.* Suppose all maps in \mathbb{C} are epimorphic and that \mathbb{C} has pairings. If $P, Q \in \text{Psh}(\mathbb{C})$ both have supports, 1203
1204 then so does the product $P \times Q$.

1197 PROOF. Consider any element $(x, y) \in (P \times Q)(X)$. Let (U, u, x') be support for x and (V, v, y') support for y . Let
1198 (W, w, u', v') be a pairing for u, v . We show that $(W, w, (x' \cdot u', y' \cdot v'))$ is support for (x, y) .

1199 Let $(Z, t, (x'', y''))$ be any representable factorisation of (x, y) . Then (Z, t, x'') is a representable factorisation of x ,
1200 so there exists a unique map $r : Z \longrightarrow U$ that is a morphism from (Z, t, x'') to (U, u, x') , i.e., such that $r \circ t = u$ and
1201 $x' \cdot r = x''$. Similarly, there exists a unique map $s : Z \longrightarrow V$ such that $s \circ t = v$ and $y' \cdot s = y''$. Since (X, t, r, s) is a pair
1202 factorisation of u, v , there exists a unique $w' : Z \rightarrow W$ such that $w' \circ t = w$ and $u' \circ w' = r$ and $v' \circ w' = s$. We claim
1203 that $w' : Z \rightarrow W$ is the unique morphism from $(Z, t, (x'', y''))$ to $(W, w, (x' \cdot u', y' \cdot v'))$. We have seen that $w' \circ t = w$.
1204 Since t is epimorphic, this determines w' uniquely. It also holds that $x' \cdot u' \cdot w' = x' \cdot r = x''$ and $y' \cdot v' \cdot w' = y' \cdot s = y''$.
1205 So w' is indeed a morphism of representable factorisations. \square

1206 We explore the above properties in the case of our running example $\text{Sh}_{\text{at}}(\mathbb{S}\text{ur})$.

1207 PROPOSITION 7.5. *In $\text{Sh}_{\text{at}}(\mathbb{S}\text{ur})$ every sheaf of the form $\underline{\text{NV}}(A)$ has supports.*

1208 PROOF. Consider any $X \in \underline{\text{NV}}(A)(\Omega)$, i.e., $X : \Omega \rightarrow A$. Factorise X as a composite $\Omega \xrightarrow{p} \Omega' \xrightarrow{X'} A$ where p is
1209 surjective and X' injective. It is easy to verify that (Ω', p, X') is a support for X . \square

1210 PROPOSITION 7.6. *The category $\mathbb{S}\text{ur}$ has pairings.*

1211 PROOF. Consider a span $\Omega_Y \xleftarrow{p} \Omega \xrightarrow{q} \Omega_Z$ in $\mathbb{S}\text{ur}$. Factorise the function $(p, q) : \Omega \rightarrow \Omega_Y \times \Omega_Z$ as $\Omega \xrightarrow{r} \Omega' \xrightarrow{(p', q')} \Omega_Y \times \Omega_Z$ where r is surjective and (p', q') injective. Then (Ω', r, p', q') is a pairing of p, q . \square

1212 Proposition 7.5 is in fact subsumed by a much more general result, which however has a far more involved proof..

1213 THEOREM 7.7. *In $\text{Sh}_{\text{at}}(\mathbb{S}\text{ur})$ every sheaf has supports.*

1214 Because this theorem is not central to the development, we relegate its proof to Appendix A

1215 We henceforth impose global assumptions on our category \mathbb{C} .

1216 Definition 7.8. We say that a small category \mathbb{C} has the *requisite structure* if: every map in \mathbb{C} is an epimorphism, it has
1217 pairings, and it has independent-pullback structure satisfying the descent property.

1218 The reason for imposing the assumption that every map is an epimorphism is that it allows us to apply Lemma 7.2 and
1219 Proposition 7.4. Because the role of \mathbb{C} is to serve as the gateway to the category $\text{Sh}_{\text{at}}\mathbb{C}$ of atomic sheaves, this assumption
1220 is very mild. As discussed at the end of Section 3, it is weaker than assuming that all representable presheaves are
1221 atomic sheaves. Moreover, every atomic sheaf topos is equivalent to $\text{Sh}_{\text{at}}\mathbb{C}$ for some coconfluent small category \mathbb{C} in
1222 which every map is an epimorphism.

1223 Since it is obvious that every map in $\mathbb{S}\text{ur}$ is epimorphic, Propositions 7.6 and 6.4 show that the category $\mathbb{S}\text{ur}$ has the
1224 requisite structure.

1225 For the remainder of the present section, let \mathbb{C} be a small category with the requisite structure.

1226 We define a general *atomic conditional independence* relation for atomic sheaves $\underline{A}, \underline{B}, \underline{C}$ on \mathbb{C} with supports. For any
1227 $X \in \mathbb{C}$, define

$$\mathbb{I}_{\underline{A}, \underline{B} | \underline{C}}(X) \subseteq (\underline{A} \times \underline{B} \times \underline{C})(X) \quad (20)$$

1228 to consist of those triples $(x, y, z) \in (\underline{A} \times \underline{B} \times \underline{C})(X)$ that satisfy the condition: there exists an independent square
1229 $r \circ p = s \circ q$ in \mathbb{C} (as in the diagram below), and there exist elements $(x', u') \in (\underline{A} \times \underline{C})(X_x)$, and $(y', v') \in (\underline{A} \times \underline{C})(X_y)$
1230 and $z' \in \underline{C}(X_z)$ such that $x' \cdot p = x$ and $y' \cdot q = y$ and $z' \cdot r = u'$ and $z' \cdot s = v'$ and $(X_z, r \circ p, z')$ is support for z . The
1231 Manuscript submitted to ACM

1249 data in the condition above is illustrated by the hybrid diagram below, where the symbol $\perp\!\!\!\perp$ indicates that the square is
 1250 independent.

$$\begin{array}{ccccc}
 1251 & X & \xrightarrow{p} & X_x & \xrightarrow{(x',u')} \underline{A} \times \underline{C} \\
 1252 & q \downarrow & \perp\!\!\!\perp & \downarrow r & \downarrow \pi_2 \\
 1253 & X_y & \xrightarrow{s} & X_z & \\
 1254 & (y',v') \downarrow & & z' \searrow & \\
 1255 & B \times C & \xrightarrow{\pi_2} & C & \\
 1256 & & & & \\
 1257 & & & & \\
 1258 & & & & \\
 1259 & & & &
 \end{array} \tag{21}$$

1260 The above diagram is *hybrid* in the sense that the arrows in it represent three distinct kinds of entity. Arrows of the
 1261 form $X \rightarrow Y$ between objects of \mathbb{C} represent maps in \mathbb{C} . Arrows of the form $X \rightarrow \underline{A}$, from an object X of \mathbb{C} to a sheaf \underline{A} ,
 1262 represent elements of the set $\underline{A}(X)$. Arrows of the form $\underline{A} \rightarrow \underline{B}$ between sheaves represent maps in $\text{Sh}_{\text{at}}(\mathbb{C})$. By the
 1263 Yoneda lemma, such hybrid diagrams can equivalently be interpreted as ordinary diagrams in the presheaf category
 1264 $\text{Psh}(\mathbb{C})$, with objects X of \mathbb{C} being interpreted as representable presheaves yX .

1265
 1266
 1267 **LEMMA 7.9.** *In the definition of $\perp\!\!\!\perp_{\underline{A}, \underline{B}|\underline{C}}(X)$, we can, without loss of generality, choose the data so that $(X_x, p, (x', u'))$ is
 1268 support for (x, z) and $(X_y, q, (y', v'))$ is support for (y, z) .*

1270 **PROOF.** Suppose we have:

$$\begin{array}{ccccc}
 1271 & X & \xrightarrow{p} & X_x & \xrightarrow{(x',u')} \underline{A} \times \underline{C} \\
 1272 & q \downarrow & \perp\!\!\!\perp & \downarrow r & \downarrow \pi_2 \\
 1273 & X_y & \xrightarrow{s} & X_z & \\
 1274 & (y',v') \downarrow & & z' \searrow & \\
 1275 & B \times C & \xrightarrow{\pi_2} & C & \\
 1276 & & & &
 \end{array} \tag{22}$$

1277 where $(X_z, r \circ p, z')$ is a support for z . Let $(X'_x, t, (x'', u''))$ be support for $(x', u') \in (\underline{A} \times \underline{C})(X_x)$. Then (X'_x, t, u'') is a
 1278 representable factorisation of $z' \cdot r$. By Lemma 7.2, (X_z, r, z') is a support for $z' \cdot r$. So there exists $r' : X'_x \rightarrow X_z$ such
 1279 that $r' \circ t = r$ and $z' \cdot r' = u''$. We have thus obtained the data in the hybrid diagram below.

$$\begin{array}{ccccc}
 1280 & X & \xrightarrow{p} & X_x & \xrightarrow{t} X'_x \xrightarrow{(x'',u'')} \underline{A} \times \underline{C} \\
 1281 & q \downarrow & \perp\!\!\!\perp & \downarrow r & \downarrow \perp\!\!\!\perp r' \downarrow \pi_2 \\
 1282 & X_y & \xrightarrow{s} & X_z & \xrightarrow{\text{id}_{X_z}} X_z \xrightarrow{z'} C \\
 1283 & & & & \\
 1284 & & & & \\
 1285 & & & & \\
 1286 & & & &
 \end{array} \tag{23}$$

1287 Moreover, by Lemma 7.2, it holds that $(X'_x, t \circ p, (x'', u''))$ is support for $(x', u') \cdot p = (x, z)$. We have thus shown
 1288 how diagram (22), gives rise to diagram (23), in which the composite independent square satisfies the desired support
 1289 property for (x, z) .

1290 By starting with the new diagram and repeating the same argument in a vertical rather than horizontal direction,
 1291 one similarly satisfies the required support property for (y, z) . \square

1292
 1293 **THEOREM 7.10.** *Suppose $\underline{A}, \underline{B}, \underline{C}$ are atomic sheaves with supports. Then $\perp\!\!\!\perp_{\underline{A}, \underline{B}|\underline{C}}(X) \subseteq (\underline{A} \times \underline{B} \times \underline{C})(X)$ defines a subsheaf
 1294 via Prop. 4.3.*

1295
 1296 **PROOF OF THEOREM 7.10.** We first show that $\perp\!\!\!\perp_{\underline{A}, \underline{B}|\underline{C}}$ is a subpresheaf. Suppose $(x, y, z) \in \perp\!\!\!\perp_{\underline{A}, \underline{B}|\underline{C}}(X)$ and $t : Y \longrightarrow X$ is a map in \mathbb{S} ; that is, we have the data in diagram (21) and $(X_z, r \circ p, z')$ is a support for z . We need

to show that $(x \cdot r, y \cdot r, z \cdot r) \in \perp\!\!\!\perp_{\underline{A}, \underline{B} \mid \underline{C}}(Y)$. This holds on account of the data illustrated below.

$$\begin{array}{ccccc}
 & Y & \xrightarrow{p \circ t} & X_x & \xrightarrow{(x', u')} \underline{A} \times \underline{C} \\
 q \circ t \downarrow & \perp\!\!\!\perp & & r \downarrow & \downarrow \pi_2 \\
 X_y & \xrightarrow{s} & X_z & & \\
 (y', v') \downarrow & & z' \searrow & & \downarrow \\
 & B \times \underline{C} & \xrightarrow{\pi_2} & \underline{C} &
 \end{array}$$

Indeed, $(X_z, r \circ p \circ t, z')$ is support for $z \circ r$ on account of Lemma 7.2, and the marked square is independent since it is a composition of two independent squares:

$$\begin{array}{ccccc}
 & Y & \xrightarrow{t} & X & \xrightarrow{p} X_x \\
 q \circ t \downarrow & \perp\!\!\!\perp & q \downarrow & \perp\!\!\!\perp & \downarrow r \\
 X_y & \xrightarrow{\text{id}_{X_y}} & X_y & \xrightarrow{s} & X_z
 \end{array}$$

For the subsheaf property, suppose $(x, y, z) \in (\underline{A} \times \underline{B} \times \underline{C})(X)$ and $(x \cdot t, y \cdot t, z \cdot t) \in \perp\!\!\!\perp_{\underline{A}, \underline{B} \mid \underline{C}}(Y)$ where $t : Y \longrightarrow X$ is a map in \mathbb{S} . We need to show that $(x, y, z) \in \perp\!\!\!\perp_{\underline{A}, \underline{B} \mid \underline{C}}(X)$.

The assumption gives us the data below

$$\begin{array}{ccccc}
 & Y & \xrightarrow{p'} & X_x & \xrightarrow{(x', u')} \underline{A} \times \underline{C} \\
 q' \downarrow & \perp\!\!\!\perp & & r \downarrow & \downarrow \pi_2 \\
 X_y & \xrightarrow{s} & X_z & & \\
 (y', v') \downarrow & & z' \searrow & & \downarrow \\
 & B \times \underline{C} & \xrightarrow{\pi_2} & \underline{C} &
 \end{array}$$

where, $x' \cdot p' = x \cdot t$ and $y' \cdot q' = y \cdot t$ and $(X_z, r \circ p', z')$ is support for $z \cdot t$. By Lemma 7.9, we can assume that $(X_x, p', (x', u'))$ is support for $(x \cdot t, z \cdot t)$ and $(X_y, q', (y', v'))$ is support for $(y \cdot t, z \cdot t)$. Since $(X, t, (x, z))$ is a representable factorisation of $(x \cdot t, z \cdot t)$, we have $p' = p \circ t$ and $(x, z) = (x' \cdot p, u' \cdot p)$, for some $p : X \longrightarrow X_x$. Similarly, $q' = q \circ t$ and $(y, z) = (y' \cdot q, v' \cdot q)$, for some $q : X \longrightarrow X_y$. Then

$$r \circ p \circ t = t \circ p' = s \circ q' = s \circ q \circ t .$$

Since t is epimorphic, $r \circ p = s \circ q$ is a commuting square, which is independent by the descent property. Accordingly, we have precisely the data in diagram (21). Moreover, since $(X_z, r \circ p \circ t, z') = (X_z, r \circ p', z')$ is support for $z \cdot t$, it follows from Lemma 7.2 that $(X_z, r \circ p, z')$ is support for z , as required. \square

In the special case of sheaves $\underline{\text{NV}}(A)$ of nondeterministic variables in $\text{Shat}(\mathbb{S}\text{ur})$, the general atomic conditional independence defined above coincides with the multiteam conditional independence from Proposition 4.5.

PROPOSITION 7.11. *The subsheaf*

$$\perp\!\!\!\perp_{\underline{\text{NV}}(A), \underline{\text{NV}}(B) \mid \underline{\text{NV}}(C)} \subseteq \underline{\text{NV}}(A) \times \underline{\text{NV}}(B) \times \underline{\text{NV}}(C)$$

1353 in $\text{Sh}_{\text{at}}(\mathbb{S}\text{ur})$ coincides with $\perp\!\!\!\perp_{A,B|C} \subseteq \underline{\text{NV}}(A) \times \underline{\text{NV}}(B) \times \underline{\text{NV}}(C)$ from Proposition 4.5.

1354
1355 PROOF. Suppose $X : \Omega \rightarrow A$, $Y : \Omega \rightarrow B$, $Z : \Omega \rightarrow C$ are nondeterministic variables such that $X \perp\!\!\!\perp Y | Z$, according
1356 to Definition 2.2. Define

$$\begin{aligned} \Omega_X &:= \{(x, z) \in A \times C \mid \exists \omega \in \Omega. x = X(\omega) \text{ and } z = Z(\omega)\} \\ \Omega_Y &:= \{(y, z) \in B \times C \mid \exists \omega \in \Omega. y = Y(\omega) \text{ and } z = Z(\omega)\} \\ \Omega_Z &:= Z(\Omega) \end{aligned}$$

1363 Then the hybrid diagram below, shows that (X, Y, Z) belongs to the atomic conditional independence $\perp\!\!\!\perp_{\underline{\text{NV}}(A), \underline{\text{NV}}(B) | \underline{\text{NV}}(C)}(\Omega)$,
1364 since $(\Omega_Z, Z, z \mapsto z)$ is support for Z , by the definition of Ω_Z .

$$\begin{array}{ccccc} \Omega & \xrightarrow{(X,Z)} & \Omega_X & \xrightarrow{(x,z) \mapsto (x,z)} & \underline{\text{NV}}(A) \times \underline{\text{NV}}(C) \\ (Y,Z) \downarrow & \perp\!\!\!\perp & \downarrow \pi_2 & & \downarrow \pi_2 \\ \Omega_Y & \xrightarrow{\pi_2} & \Omega_Z & \xrightarrow{z \mapsto z} & \underline{\text{NV}}(C) \\ (y,z) \mapsto (y,z) \downarrow & & & & \downarrow \pi_2 \\ \underline{\text{NV}}(B) \times \underline{\text{NV}}(C) & \xrightarrow{\pi_2} & & & \underline{\text{NV}}(C) \end{array}$$

1375 Conversely, suppose $(X, Y, Z) \in \perp\!\!\!\perp_{\underline{\text{NV}}(A), \underline{\text{NV}}(B) | \underline{\text{NV}}(C)}(\Omega)$. That is, we have the data in the hybrid diagram below,
1376 where $X' \cdot p = X$ and $Y' \cdot q = Y$ and $(\Omega_Z, r \circ p, Z')$ is support for Z .

$$\begin{array}{ccccc} \Omega & \xrightarrow{p} & \Omega_X & \xrightarrow{(X',U')} & \underline{\text{NV}}(A) \times \underline{\text{NV}}(C) \\ q \downarrow & \perp\!\!\!\perp & \downarrow r & & \downarrow \pi_2 \\ \Omega_Y & \xrightarrow{s} & \Omega_Z & \xrightarrow{Z'} & \underline{\text{NV}}(C) \\ (Y',V') \downarrow & & & & \downarrow \pi_2 \\ \underline{\text{NV}}(B) \times \underline{\text{NV}}(C) & \xrightarrow{\pi_2} & & & \underline{\text{NV}}(C) \end{array}$$

1387 We show that $X \perp\!\!\!\perp Y | Z$, according to Definition 2.2. Suppose we have $\omega', \omega'' \in \Omega$ such that $X(\omega') = a$ and $Z(\omega') = c$
1388 and $Y(\omega'') = b$ and $Z(\omega'') = c$. Then

$$1390 \quad Z'(r(p(\omega'))) = Z(\omega') = Z(\omega'') = Z'(s(q(\omega''))) .$$

1392 Since $(\Omega_Z, r \circ p, Z')$ is support for Z , the function $Z' : \Omega_Z \rightarrow C$ is injective, hence $r(p(\omega')) = s(q(\omega''))$. Since the
1393 top-left square is independent, there exists $\omega \in \Omega$ such that $p(\omega) = p(\omega')$ and $q(\omega) = q(\omega'')$. Then $X(\omega) = X'(p(\omega)) =$
1394 $X'(p(\omega')) = X(\omega') = a$. Similarly, $Y(\omega) = b$, and $Z(\omega) = c$. \square

1398 We now turn to the extension of the atomic sheaf logic of Sections 4 and 5 with conditional independence formulas (2).
1399 Once again, we view this extension as being obtained by including a family of relation symbols. In this case we add
1400 relations $\perp\!\!\!\perp_{\vec{A}, \vec{B} | \vec{C}}$, and require that each such relation is interpreted as the subsheaf
1401

$$1402 \quad \perp\!\!\!\perp_{\vec{A}, \vec{B} | \vec{C}} \subseteq \vec{A} \times \vec{B} \times \vec{C} ,$$

$$\begin{aligned}
1405 \quad & \vec{x} \perp \vec{y} \mid \vec{z} \rightarrow \pi(\vec{x}) \perp \pi'(\vec{y}) \mid \pi''(\vec{z}) & (24) \\
1406 \quad & \vec{x} \perp \vec{y} \mid \vec{y} & (25) \\
1407 \quad & \vec{x} \perp \vec{y} \mid \vec{z} \rightarrow \vec{y} \perp \vec{x} \mid \vec{z} & (26) \\
1408 \quad & \vec{x} \perp \vec{y}, \vec{z} \mid \vec{w} \rightarrow \vec{x} \perp \vec{y} \mid \vec{w} & (27) \\
1409 \quad & \vec{x} \perp \vec{y}, \vec{z} \mid \vec{w} \rightarrow \vec{x} \perp \vec{y} \mid \vec{z}, \vec{w} & (28) \\
1410 \quad & \vec{x} \perp \vec{y} \mid \vec{z}, \vec{w} \wedge \vec{x} \perp \vec{z} \mid \vec{w} \rightarrow \vec{x} \perp \vec{y}, \vec{z} \mid \vec{w} & (29) \\
1411 \quad & \exists \vec{y}. (\vec{y}, \vec{w} \sim \vec{x}, \vec{w} \wedge \vec{y} \perp \vec{z} \mid \vec{w}) & (30) \\
1412 \quad & \\
1413 \quad & \\
1414 \quad & \\
1415 \quad & \\
1416 \quad & \text{Fig. 4. Axioms for conditional independence} \\
1417 \quad & \\
1418 \quad & \\
1419 \quad \text{where we write, e.g., } \vec{A} \text{ for the product } \prod_{i=1}^n A_i, \text{ where } \vec{A} \text{ is the vector of sorts } A_1, \dots, A_n. \text{ To ensure that } \perp_{\vec{A}, \vec{B}, \vec{C}} \text{ is well} \\
1420 \quad \text{defined, we require that every sort } A \text{ is interpreted as a sheaf } \underline{A} \text{ with supports.} \\
1421 \quad & \\
1422 \quad \text{Figure 4 lists formulas valid in this semantics that we single out as a suitable list of axioms for reasoning about} \\
1423 \quad \text{conditional independence. Axiom (24) asserts that conditional independence is preserved under permutations within} \\
1424 \quad \text{each of the three lists of variables involved. This axiom, together with axioms (25)–(29) are all standard axioms for} \\
1425 \quad \text{conditional independence, appearing in closely related forms in [7, Theorem 3.1 and Lemmas 4.1–4.3], in [40, Theorem 1]} \\
1426 \quad \text{and in the work of Pearl, Paz and Geiger [15, 16, 33] (in which only conditional independence statements of the restricted} \\
1427 \quad \text{form } \vec{x} \perp \vec{y} \mid \vec{z} \text{ for three disjoint sets of variables } \vec{x}, \vec{y} \text{ and } \vec{z} \text{ are considered). The axioms appear more explicitly in their} \\
1428 \quad \text{present form in Dawid's axioms for the notion of } \textit{separoid} [8]. We leave the straightforward verification of the soundness} \\
1429 \quad \text{of axioms (24)–(27) to the reader. The soundness of axioms (28) and (29) is more technical. To avoid encumbering the} \\
1430 \quad \text{main development with these technical proofs, they are given in Appendix B.} \\
1431 \quad & \\
1432 \quad & \\
1433 \quad \text{Whereas axioms (24)–(29) concern conditional independence in isolation, axiom (30) captures the interaction between} \\
1434 \quad \text{conditional independence and atomic equivalence. Axiom (30) makes essential use of the existential quantifier of atomic} \\
1435 \quad \text{sheaf logic to capture a key first-order property: given variables } \vec{x}, \vec{z}, \vec{w} \text{ one can always find variables } \vec{y} \text{ that are} \\
1436 \quad \text{conditionally independent from } \vec{z} \text{ given } \vec{w}, \text{ but such that } \vec{y}, \vec{w} \text{ is jointly equivalent to } \vec{x}, \vec{w}. \text{ We call this property the} \\
1437 \quad \text{independent existence principle: independent variables with any desired distribution always exist. The validity of the} \\
1438 \quad \text{principle of independent existence (30) is established by Lemma 7.12 below.} \\
1439 \quad & \\
1440 \quad & \\
1441 \quad \text{LEMMA 7.12. Given } x \in \underline{A}(X), z \in \underline{B}(X) \text{ and } w \in \underline{C}(X), \text{ there exist } p: Y \rightarrow X \text{ and } y \in \underline{A}(Y) \text{ such that} \\
1442 \quad & \\
1443 \quad & ((y, w \cdot p), (x \cdot p, w \cdot p)) \in \sim_{\underline{A} \times \underline{C}}(Y) & (31) \\
1444 \quad & \\
1445 \quad & (y, z \cdot p, w \cdot p) \in \perp_{\underline{A}, \underline{B} \mid \underline{C}}(Y) . & (32) \\
1446 \quad & \\
1447 \quad \text{PROOF. Let } (Z, s, w') \text{ be support for } w, \text{ and consider the independent pullback of } s: X \rightarrow Z \text{ along itself:} \\
1448 \quad & \\
1449 \quad & \begin{array}{ccc} Y & \xrightarrow{p} & X \\ q \downarrow & & \downarrow s \\ X & \xrightarrow{s} & Z \end{array} \\
1450 \quad & \\
1451 \quad & \\
1452 \quad & \\
1453 \quad & \\
1454 \quad \text{We have:} \\
1455 \quad & w \cdot p = w' \cdot s \cdot p = w' \cdot s \cdot q = w \cdot q . \\
1456 \quad & \\
1457 \quad \text{Manuscript submitted to ACM}
\end{aligned}$$

$$\begin{array}{ccc}
Y & \xrightarrow{p} & X \\
q \downarrow & & \downarrow s \\
X & \xrightarrow{s} & Z
\end{array}$$

We have:

$$w \cdot p = w' \cdot s \cdot p = w' \cdot s \cdot q = w \cdot q .$$

1457 Define $y := x \cdot q$.

1458 By the independent pullback above, there is a unique map $t : Y \rightarrow Y$ such that $p \circ t = q$ and $q \circ t = p$. So:

1460
$$(y, w \cdot p) = (x \cdot q, w \cdot q) = (x \cdot p \circ t, w \circ p \circ t) .$$

1461 Thus the pair $\text{id}_Y, t : Y \rightarrow Y$ shows that (31) holds.

1462 For the independence statement, we have:

$$\begin{array}{ccccc} Y & \xrightarrow{q} & X & \xrightarrow{(x,w)} & \underline{A} \times \underline{C} \\ p \downarrow & \perp\!\!\!\perp & \downarrow s & & \downarrow \pi_2 \\ X & \xrightarrow{s} & Z & \searrow w' & \downarrow \pi_2 \\ (z,w) \downarrow & & & & \underline{B} \times \underline{C} \\ & & & & \xrightarrow{\pi_2} \underline{C} \end{array}$$

1463 The first component of the top side is $x \cdot q = y \in \underline{A}(Y)$. The first component of the left side is $z \cdot p \in \underline{B}(Y)$. Moreover, by
1464 Lemma 7.2, $(Z, s \circ p, w')$ is support for $w \cdot p$. Thus we indeed have (32). \square

1465 As an interesting consequence of the axioms, we prove that existence properties are preserved under conditional
1466 independence, in the sense of the result below. This provides a first-order reasoning principle for conditional inde-
1467 pendence, whose scope potentially extends beyond atomic sheaf logic to more general contexts in which there is a
1468 conditional independence relation but no analogue of the relation \sim of atomic equivalence.

1469 **THEOREM 7.13 (EXISTENCE PRESERVATION).** *The schema below follows from the axioms in Figs. 3 and 4.*

1470
$$(\exists \vec{y}. \Phi(\vec{x}, \vec{y}, \vec{w})) \rightarrow \forall \vec{z}. (\vec{x} \perp \vec{z} \mid \vec{w} \rightarrow \exists \vec{y}. (\vec{x}, \vec{y} \perp \vec{z} \mid \vec{w} \wedge \Phi(\vec{x}, \vec{y}, \vec{w})))$$

1471 Here we adopt the same convention as in the invariance principle. In $\Phi(\vec{x}, \vec{y}, \vec{w})$ every free variable in Φ has been substituted
1472 by one of the variables in $\vec{x}, \vec{y}, \vec{w}$.

1473 **PROOF.** Let \vec{y} be such that

1474
$$\Phi(\vec{x}, \vec{y}, \vec{w}) . \quad (33)$$

1475 Consider any \vec{z} . By the independent existence principle (30), there exists \vec{y}' such that

1476
$$\vec{y}', \vec{x}, \vec{w} \sim \vec{y}, \vec{x}, \vec{w} \quad (34)$$

1477 and

1478
$$\vec{y}' \perp \vec{z} \mid \vec{x}, \vec{w} . \quad (35)$$

1479 Suppose

1480
$$\vec{x} \perp \vec{z} \mid \vec{w} . \quad (36)$$

1481 Then (35) and (36) combine to give $\vec{x}, \vec{y}' \perp \vec{z} \mid \vec{w}$, by the axioms for conditional independence.

1482 Further, (33) and (34) combine to give $\Phi(\vec{x}, \vec{y}', \vec{w})$, by the invariance principle (15). \square

1504 8 Probability sheaves

1505 In this long section, we present another instance of our axiomatic structure: atomic sheaves over *standard Borel*
1506 *probability spaces*. The idea is that such spaces take the role of sample spaces, and random variables over such sample
1507 spaces.

1509 spaces collectively form an atomic sheaf. More precisely, for any standard Borel space A , we shall obtain a sheaf $\underline{RV}(A)$
 1510 of all A -valued random variables. For this aim, the standard-Borel assumption serves three purposes. Firstly, it is
 1511 sufficiently general that it encompass both discrete and continuous probability. Secondly, it provides a *small* category of
 1512 sample spaces to build atomic sheaves over. Finally, it also provides useful technical machinery (such as *disintegrations*
 1513 of random variables), which would be unavailable in general if arbitrary probability and measurable spaces were used.
 1514 This machinery is essential in showing that the category of sample spaces has independent pullback structure. When
 1515 interpreted over the sheaves of random variables $\underline{RV}(A)$, atomic sheaf logic provides logical principles governing
 1516 the relations of almost sure equality, of equality in distribution and of conditional independence with its standard
 1517 probabilistic meaning, since these three relations are respectively encapsulated as equality, atomic equivalence and
 1518 atomic conditional independence in the logic.
 1519

1520 In order to fully understand the technical development in the present section, it is necessary to have some background
 1521 in probability and measure theory. Nevertheless, we try to also explain the main ideas informally, so help readers
 1522 without the necessary background to follow the line of development at a high level.
 1523

1524 Standard Borel spaces will be the value spaces of random variables, and they will also be the structures over which
 1525 we build sample spaces.
 1526

1527 *Definition 8.1 (Standard Borel space).* A *standard Borel space* (SBS) is a measurable space (A, \mathcal{B}_A) where A is a Borel
 1528 subset of a Polish space T (i.e., a complete separable metric space) and \mathcal{B}_A is the σ -algebra $\{S \cap A \mid S \subseteq T \text{ is Borel}\}$. A
 1529 *morphism* of standard Borel spaces from (A, \mathcal{B}_A) to (B, \mathcal{B}_B) is a function $f : A \rightarrow B$ that is *measurable*, i.e., $f^{-1}(S) \in \mathcal{B}_A$
 1530 for all $S \in \mathcal{B}_B$.
 1531

1532 When (A, \mathcal{B}_A) is a standard Borel space, we shall refer to the sets in \mathcal{B}_A as the *Borel subsets* of A , which is justified
 1533 because A can always itself be given a Polish topology in which \mathcal{B}_A is the Borel σ -algebra. As is well known, the image
 1534 $f(C)$ of a Borel subset $C \subseteq A$ under a measurable function $f : A \rightarrow B$, where (B, \mathcal{B}_B) is also standard Borel, need not
 1535 itself be a Borel subset of B , but $f(C)$ is always an *analytic* subset of B .
 1536

1537 On the one hand, the collection of standard Borel spaces is very rich, as it incorporates most measurable spaces
 1538 that arise naturally in mathematics. On the other, it is also limited, since there are only two types of standard Borel
 1539 spaces: (i) spaces $(A, \mathcal{P}(A))$, where A is a *countable* (possibly finite) set with its full powerset $\mathcal{P}(A)$ as the σ -algebra;
 1540 and (ii) spaces (A, \mathcal{B}_A) that are isomorphic to the real numbers with the Borel σ -algebra $(\mathbb{R}, \mathcal{B})$. As a consequence
 1541 of this classification, every standard Borel space has a measurable embedding into the interval $[0, 1]$ with the Borel
 1542 σ -algebra $\mathcal{B}_{[0,1]}$.
 1543

1544 Standard Borel probability spaces will act as our sample spaces. As such, they will provide the objects of the category
 1545 of sample spaces over which we shall consider atomic sheaves.
 1546

1547 *Definition 8.2 (Standard Borel probability space).* A *standard Borel probability space* (SBPS) is a triple $(\Omega, \mathcal{B}_\Omega, P_\Omega)$
 1548 where $(\Omega, \mathcal{B}_\Omega)$ is an SBS and $P_\Omega : \mathcal{B}_\Omega \rightarrow [0, 1]$ is a probability measure. A *morphism* of standard Borel probability
 1549 spaces from $(\Omega, \mathcal{B}_\Omega, P_\Omega)$ to $(\Omega', \mathcal{B}_{\Omega'}, P_{\Omega'})$ is an SBS morphism q from $(\Omega, \mathcal{B}_\Omega)$ to $(\Omega', \mathcal{B}_{\Omega'})$ that *preserves measure*; i.e.,
 1550 $q_*(P_\Omega) = P_{\Omega'}$, where $q_*(P)$ is the *pushforward measure* $S \mapsto P_\Omega(q^{-1}(S)) : \mathcal{B}_{\Omega'} \rightarrow [0, 1]$.
 1551

1552 As with standard Borel spaces, standard Borel probability spaces include the most common probability spaces that one
 1553 naturally encounters in mathematics. Any standard Borel probability space $(\Omega, \mathcal{B}_\Omega, P_\Omega)$ can be decomposed uniquely
 1554 into its *discrete* and *continuous* parts, moreover the continuous part has a very constrained form. In detail, there exist
 1555 unique Borel measures $\delta, \mu : \mathcal{B}_\Omega \rightarrow [0, 1]$ such that $P_\Omega = \delta + \mu$, the measure δ is *discrete* (i.e., $\delta(B) = \sum_{x \in B} \delta(\{x\})$)
 1556 Manuscript submitted to ACM
 1557

for every $B \in \mathcal{B}_\Omega$), and either $\mu = 0$ or $(\Omega, \mathcal{B}_\Omega, \mu)$ is isomorphic, via measure-preserving functions, to the interval $([0, c], \mathcal{B}_{[0,c]}, \lambda)$, where $c := P_\Omega(\Omega)$, with the Borel σ -algebra $\mathcal{B}_{[0,c]}$ and the (Borel restriction of) Lebesgue measure $\lambda : \mathcal{B}_{[0,c]} \rightarrow [0, c]$.

In probability theory, a random variable is a measurable function from a probability space, called the sample space, to a measurable space, the value space. In this paper, we restrict ourselves to the case in which these spaces are both standard Borel. This is broad enough to incorporate both the discrete and continuous random variables arising most commonly in mathematics.

Definition 8.3 (Random variable). If Ω is an SBPS and A is an SBS (for notational convenience we here and henceforth abbreviate (A, \mathcal{B}_A) as A and $(\Omega, \mathcal{B}_\Omega, P_\Omega)$ as Ω), a *random variable* $X : \Omega \rightarrow A$ is a measurable function from $(\Omega, \mathcal{B}_\Omega)$ to (A, \mathcal{B}_A) . The SBPS Ω is called the *sample space* of X , and the SBS A is called the *value space*.

We next define the three main relations between random variables we shall be interested in: *almost-sure equality*, *equidistribution* and *conditional independence*.

In general, we say that a property of elements $\omega \in \Omega$ holds for P_Ω -almost-all ω if there exists $S \in \mathcal{B}_\Omega$ with $P_\Omega(S) = 1$ such that the property holds for every $\omega \in S$.

Definition 8.4 (Almost-sure equality). Two random variables $X, Y : \Omega \rightarrow A$ are *almost surely equal* (notation $X =_{\text{a.s.}} Y$) if $X(\omega) = Y(\omega)$ holds for P_Ω -almost-all ω . (Since A is a standard Borel space, the set $\{\omega \in \Omega \mid X(\omega) = Y(\omega)\}$ is measurable, and the above condition is equivalent to asking that $P_\Omega(\{\omega \in \Omega \mid X(\omega) = Y(\omega)\}) = 1$.)

The *distribution* (or *law*) of a random variable $X : \Omega \rightarrow A$ is the probability measure $P_X : \mathcal{B}_A \rightarrow [0, 1]$ defined as the pushforward $P_X := X_*(P_\Omega)$.

Definition 8.5 (Equidistribution). Two random variables $X, Y : \Omega \rightarrow A$ are *equidistributed* (notation $X \stackrel{d}{=} Y$) if $P_X = P_Y$.

An important consequence of only considering random variables between standard Borel spaces is that random variables have *disintegrations*. We state this property as Fact 8.6 below. A proof of can be found in [10]. We mention also that an equivalent statement to Fact 8.6 appears as Theorem 6 of [6].

Fact 8.6. Every random variable $X : \Omega \rightarrow A$ has a *disintegration*; that is, a Markov kernel $D_X : A \times \mathcal{B}_\Omega \rightarrow [0, 1]$

$$(x, S) \mapsto P_{X^{-1}(x)}(S) : A \times \mathcal{B}_\Omega \rightarrow [0, 1]$$

satisfying the two properties below.

(D1) $P_{X^{-1}(x)}(X^{-1}(x)) = 1$ for P_X -almost all $x \in A$, and

(D2) for every $S \in \mathcal{B}_\Omega$,

$$P_\Omega(S) = \int P_{X^{-1}(x)}(S) \, dP_X(x) .$$

By the Markov kernel property, the function $S \mapsto P_{X^{-1}(x)}(S)$ is a probability measure $P_{X^{-1}(x)} : \mathcal{B}_\Omega \rightarrow [0, 1]$, for every $x \in A$. By (D1), $P_{X^{-1}(x)}$ can be thought of as a probability measure on the fibre set $X^{-1}(x) \in \mathcal{B}_\Omega$, which, by (D2), represents the conditional probability distribution on $\omega \in \Omega$ under the condition $X(\omega) = x$. Properties (D1) and (D2) together characterise the mapping $x \mapsto P_{X^{-1}(x)}$ up to P_Ω -almost-sure equality.

Exploiting disintegrations, we give a definition of conditional independence that is a transparent generalisation of the elementary probabilistic definition of unconditional independence.

1613 *Definition 8.7 (Conditional independence).* For random variables $X : \Omega \rightarrow A$, $Y : \Omega \rightarrow B$ and $Z : \Omega \rightarrow C$, we say that
 1614 X and Y are *conditionally independent given Z* (notation $X \perp\!\!\!\perp Y \mid Z$) if, for every $S \in \mathcal{B}_A$ and $T \in \mathcal{B}_B$, and for P_Z -almost
 1615 all $z \in C$,

$$1617 \quad P_{Z^{-1}(z)}(X^{-1}(S) \cap Y^{-1}(T)) = P_{Z^{-1}(z)}(X^{-1}(S)) \cdot P_{Z^{-1}(z)}(Y^{-1}(T)) . \\ 1618$$

1619 Our goal in this section is to recover the three principal relations between random variables (almost-sure equality,
 1620 equidistribution and conditional independence) as the relations of equality, atomic equivalence and atomic conditional
 1621 independence in a suitable atomic sheaf topos. In order to be able to construct sheaves of random variables, the category
 1622 over which sheaves will be taken is a category of sample spaces. In fact we consider two such categories.
 1623

1624 *Definition 8.8 (The categories \mathbb{SBP} and \mathbb{SBP}_0).* We write \mathbb{SBP} for a small category of standard Borel probability
 1625 spaces, that contains every such space up to isomorphism. We write \mathbb{SBP}_0 for the quotient category, with the same
 1626 objects, in which morphisms are equivalence classes $[p]$ of maps modulo almost-sure equality $=_{\text{a.s.}}$.
 1627

1628 It is an interesting fact that one can take the category of atomic sheaves over either category, \mathbb{SBP} or \mathbb{SBP}_0 , and in
 1629 doing so one obtains equivalent categories of sheaves. Sheaves for the atomic topology on \mathbb{SBP} were introduced in [37]
 1630 as *probability sheaves*. In the present paper, it will be convenient to instead take atomic sheaves over \mathbb{SBP}_0 . Since the
 1631 two categories of sheaves are equivalent, we shall continue to use the name *probability sheaves*. The equivalence of the
 1632 two categories will be shown in a separate paper.
 1633

1634 An important advantage of working with \mathbb{SBP}_0 is the property below, which fails for \mathbb{SBP} .

1635 **PROPOSITION 8.9.** *Every morphism in \mathbb{SBP}_0 is an epimorphism.*

1636 **PROOF.** We first observe that every map $q : \Omega \rightarrow \Omega'$ in \mathbb{SBP} is *almost surjective* in the sense that, for any $S \in \mathcal{B}_\Omega$
 1637 with $P_\Omega(S) = 1$, there exists $T \subseteq q(S)$ such that $T \in \mathcal{B}_{\Omega'}$ and $P_{\Omega'}(T) = 1$. This holds because the image $q(S)$ is an
 1638 analytic subset of Ω' with outer measure 1. Since all analytic sets are measurable with respect to the completion of the
 1639 Borel measure $P_{\Omega'}$, the image $q(S)$ also has inner measure 1, meaning that there exists $T \subseteq q(\Omega)$ with the required
 1640 properties.
 1641

1642 To prove that every morphism in \mathbb{SBP}_0 is epimorphic, suppose we have $[q] : \Omega \rightarrow \Omega'$ and $[r], [r'] : \Omega' \rightarrow \Omega''$ such
 1643 that $[r] \circ [q] = [r'] \circ [q]$; i.e., $r \circ q =_{\text{a.s.}} r' \circ q$. Let $S \subseteq \Omega$ be Borel such that $P_\Omega(S) = 1$ and $(r \circ q) \upharpoonright_S = (r' \circ q) \upharpoonright_S$. By the
 1644 almost surjectivity of q , let $T \subseteq q(S)$ be such that $T \in \mathcal{B}_{\Omega'}$ and $P_{\Omega'}(T) = 1$. Then $r \upharpoonright_T = r' \upharpoonright_T$; i.e., $r =_{\text{a.s.}} r'$. Equivalently
 1645 $[r] = [r']$ as required. \square
 1646

1647 **PROPOSITION 8.10.** *The category \mathbb{SBP}_0 has pairings.*

1648 **PROOF.** Given any span $\Omega_Y \xleftarrow{[p]} \Omega_X \xrightarrow{[q]} \Omega_Z$ in \mathbb{SBP}_0 , its pairing is given by $(\Omega, [(p, q)], \pi_1, \pi_2)$, where $\Omega :=$
 1649 $(\Omega_Y \times \Omega_Z, \mathcal{B}_{\Omega_Y \times \Omega_Z}, P_{(p, q)})$, using the product standard Borel space and the probability distribution of the paired
 1650 random variables p and q . The properties of a pairing are easily verified, using Proposition 8.9 for uniqueness. \square
 1651

1652 **Definition 8.11 (Independent square in \mathbb{SBP}_0).** Define a commuting square in \mathbb{SBP}_0

$$1653 \quad \begin{array}{ccc} \Omega_X & \xrightarrow{[p]} & \Omega_Y \\ [q] \downarrow & & \downarrow [r] \\ \Omega_Z & \xrightarrow{[s]} & \Omega_W \end{array} \quad (37)$$

1654 to be *independent* if $p \perp\!\!\!\perp q \mid r \circ p$, using conditional independence of random variables (Definition 8.7).
 1655

1665 PROPOSITION 8.12. *Definition 8.11 endows \mathbb{SBP}_0 with independent pullback structure satisfying the descent property.*

1666
1667 The proof of Proposition 8.12, which is intricate, can be found in Appendix C. In the present section, we content
1668 ourselves with exhibiting the construction needed to complete any cospan $\Omega_Y \xrightarrow{[r]} \Omega_W \xleftarrow{[s]} \Omega_Z$ to an independent
1669 pullback. Using the disintegrations for r and s , we endow the standard Borel product $(\Omega_Y \times \Omega_Z, \mathcal{B}_{\Omega_Y \times \Omega_Z})$ with the
1670 probability measure P defined as:

1671
1672
$$U \mapsto \int (P_{r^{-1}(\omega)} \otimes P_{s^{-1}(\omega)})(U) dP_{\Omega_W}(\omega), \quad (38)$$

1673 where $P_{r^{-1}(\omega)} \otimes P_{s^{-1}(\omega)}$ is the product probability measure. Then

1674
1675
$$(\Omega_Y \times \Omega_Z, \mathcal{B}_{\Omega_Y \times \Omega_Z}, P)$$

1676 together with the two projections, which are measure preserving, gives the required independent pullback. We write
1677 the resulting independent pullback square as

1678
1679
$$\begin{array}{ccc} \Omega_Y \otimes_{\Omega_W} \Omega_Z & \xrightarrow{[p_1]} & \Omega_Y \\ [p_2] \downarrow & & \downarrow [r] \\ \Omega_Z & \xrightarrow{[s]} & \Omega_W \end{array}$$

1680 In combination, Propositions 8.9, 8.10 and 8.12 show that the category \mathbb{SBP}_0 has the requisite structure (Definition 7.8).

1681 We next define the anticipated sheaves of random variables, first by defining them as presheaves, and then subsequently
1682 verifying the atomic sheaf property.

1683
1684 *Definition 8.13 (Presheaf of random variables $\underline{RV}(A)$).* Let A be a standard Borel space. Define a presheaf $\underline{RV}(A) \in$
1685 $\text{Psh}(\mathbb{SBP}_0)$ of A -valued random variables (modulo $=_{\text{a.s.}}$) by:

1686
1687 • $\underline{RV}(A)(\Omega) :=$ equivalence classes of random variables $X : \Omega \rightarrow A$ modulo $=_{\text{a.s.}}$.
1688 • For $[X] \in \underline{RV}(A)(\Omega)$ and $[q] : \Omega' \rightarrow \Omega$, define $[X] \cdot [q] := [X \circ q]$.

1689 We remark that a similar definition can be used to define a presheaf of A -valued random variables modulo $=_{\text{a.s.}}$ over the
1690 base category \mathbb{SBP} . In the case that \mathbb{SBP} is used as the base category, one can also define an alternative presheaf of
1691 random variables, in which random variables are not quotiented modulo $=_{\text{a.s.}}$, an option which is not available when
1692 \mathbb{SBP}_0 is used as the base category. The \mathbb{SBP} -presheaf of unquotiented A -valued random variables is not, however, an
1693 atomic sheaf. In contrast, irrespective of the choice of base category, \mathbb{SBP} or \mathbb{SBP}_0 , the presheaf of random variables
1694 modulo $=_{\text{a.s.}}$ does form a sheaf. We prove this in the case of our chosen base category, \mathbb{SBP}_0 .

1695
1696 PROPOSITION 8.14. *For any standard Borel space A , it holds that $\underline{RV}(A)$ is an atomic sheaf.*

1697 PROOF. Suppose $[Y] \in \underline{RV}(A)(\Omega')$ is $[q]$ -invariant where $\Omega' \xrightarrow{q} \Omega$ is a map in \mathbb{SBP}_0 . Consider the independent
1698 pullback square

1699
1700
$$\begin{array}{ccc} \Omega' \otimes_{\Omega} \Omega' & \xrightarrow{[p_1]} & \Omega' \\ [p_2] \downarrow & & \downarrow [q] \\ \Omega' & \xrightarrow{[q]} & \Omega \end{array}$$

1701 By $[q]$ -invariance, $[Y] \cdot [p_1] = [Y] \cdot [p_2]$, i.e., $Y \circ p_1 =_{\text{a.s.}} Y \circ p_2$. That is, the measure of

1702
1703
$$U := \{(\omega'_1, \omega'_2) \in \Omega' \times \Omega' \mid Y(\omega_1) = Y(\omega_2)\}$$

1717 in $\Omega' \otimes_{\Omega} \Omega'$ is 1. Equivalently, using (38),

$$1719 \quad \int (P_{q^{-1}(\omega)} \otimes P_{q^{-1}(\omega)})(U) \, dP_{\Omega}(\omega) = 1.$$

1720 So, for P_{Ω} -almost all $\omega \in \Omega$, we have

$$1722 \quad (P_{q^{-1}(\omega)} \otimes P_{q^{-1}(\omega)})(U) = 1.$$

1724 For any such ω , by the definition of product measure,

$$1725 \quad \int \int \mathbb{1}_U(\omega'_1, \omega'_2) \, dP_{q^{-1}(\omega)}(\omega'_1) \, dP_{q^{-1}(\omega)}(\omega'_2) = 1,$$

1727 where $\mathbb{1}_U$ is the indicator function for the set U . So for $P_{q^{-1}(\omega)}$ -almost all ω'_1 and $P_{q^{-1}(\omega)}$ -almost all ω'_2 , we have
1728 $(\omega'_1, \omega'_2) \in U$, i.e., $Y(\omega'_1) = Y(\omega'_2)$. By arguing using the decomposability property of $P_{q^{-1}(\omega)}$ discussed beneath
1729 Definition 8.2, it follows there exists a Borel subset $C_{\omega} \subseteq \Omega'$ with $P_{q^{-1}(\omega)}(C_{\omega}) = 1$ such that Y is constant on C_{ω} . By
1730 the first property of disintegrations, $P_{q^{-1}(\omega)}(q^{-1}(\omega)) = 1$. Defining $D_{\omega} := C_{\omega} \cap q^{-1}(\omega)$, it holds that $P_{q^{-1}(\omega)}(D_{\omega}) = 1$,
1731 the function q has constant value ω on D_{ω} , and Y is also constant on D_{ω} . Let d_{ω} be the constant value of Y on D_{ω} .
1732 Note that we have obtained such d_{ω} and D_{ω} , for P_{Ω} -almost-all ω .

1735 Next we show that there exists a measurable function $X : \Omega \rightarrow A$ such that $X(\omega) = d_{\omega}$, for P_{Ω} -almost all ω . We first
1736 show this in the special case that $A \subseteq \mathbb{R}$ is a closed bounded interval, so all A -valued random variables are integrable
1737 with their integrals taking values in A . Using integrability, we define

$$1739 \quad X(\omega) := \int Y(\omega') \, dP_{q^{-1}(\omega)}(\omega') . \quad (39)$$

1741 For P_{Ω} -almost all ω , we have

$$1743 \quad \int Y(\omega') \, dP_{q^{-1}(\omega)}(\omega') = d_{\omega} , \quad (40)$$

1744 because $Y(\omega') = d_{\omega}$, for $P_{q^{-1}(\omega)}$ -almost all $\omega' \in D_{\omega}$. So we indeed have the required measurable function X in the
1745 case of a closed bounded interval A . In the case of an arbitrary standard Borel space A , one takes some measurable
1746 embedding of A into $[0, 1]$ (see the discussion after Definition 8.1), and then the definition of X given above can be used
1747 to obtain a measurable function $\Omega \rightarrow [0, 1]$ that lands with probability 1 in the image of the embedding of A in $[0, 1]$,
1748 meaning that it restricts (modulo redefining it on a null set) to the required map $X : \Omega \rightarrow A$.

1749 We next verify that $X \circ q =_{\text{a.s.}} Y : \Omega' \rightarrow A$. Consider the Borel set $E := \{\omega' \in \Omega' \mid X(q(\omega')) = Y(\omega')\}$. We claim
1750 that, for P_{Ω} -almost-every ω , it holds that $D_{\omega} \subseteq E$. Indeed, for P_{Ω} -almost-all ω , we have that $\omega' \in D_{\omega}$ implies both
1751 $q(\omega') = \omega$ and $Y(\omega') = d_{\omega}$, hence $X(q(\omega')) = Y(\omega')$ follows, i.e., $\omega' \in E$. Because $D_{\omega} \subseteq E$, we have

$$1755 \quad P_{q^{-1}(\omega)}(E) = P_{q^{-1}(\omega)}(D_{\omega}) = 1 .$$

1757 By the definition of disintegrations,

$$1758 \quad P_{\Omega'}(E) = \int P_{q^{-1}(\omega)}(E) \, dP_{\Omega}(\omega) = \int 1 \, dP_{\Omega}(\omega) = 1 .$$

1760 So indeed $X \circ q =_{\text{a.s.}} Y : \Omega' \rightarrow A$. That is, $[X] \cdot [q] = [Y]$. So $[X]$ is a $[q]$ -descendent of $[Y]$.

1762 That $[X]$ is the unique $[q]$ -descendent of $[Y]$ holds because q is almost surjective, as in the proof of Proposition 8.9. \square

1764 **COROLLARY 8.15.** *For any SBPS Ω the representable presheaf $y\Omega$ is an atomic sheaf.*

1765 **PROOF.** For any SBPS Ω' , we have that $(y\Omega)(\Omega') \subseteq \underline{\text{RV}}(\Omega)(\Omega')$; indeed it is the subset of measure-preserving
1766 functions. It is then easily verified using Proposition 4.3 that $y\Omega$ is a subsheaf of $\underline{\text{RV}}(\Omega)$. In particular, $y\Omega$ is a sheaf. \square

We end this section by showing as promised that the three atomic forms of atomic formula of our general atomic sheaf logic are, in the case that sorts are interpreted as sheaves of random variables, correctly interpreted as the expected probabilistic relations between random variables. Firstly, that equality in the logic corresponds to almost sure equality of random variables is immediate from the definition of the sheaf $\underline{\text{RV}}(A)$, in which random variables are explicitly identified modulo $=_{\text{a.s.}}$. Secondly, Proposition 8.16 below shows that atomic equivalence is interpreted as the equidistribution relation $\stackrel{d}{=}$.

PROPOSITION 8.16. *For any SBS A , the atomic equivalence subsheaf $\sim_{\underline{\text{RV}}(A)} \subseteq \underline{\text{RV}}(A) \times \underline{\text{RV}}(A)$ from Theorem 5.1 satisfies:*

$$\sim_{\underline{\text{RV}}(A)}(\Omega) = \{([X], [X']) \in (\underline{\text{RV}}(A) \times \underline{\text{RV}}(A))(\Omega) \mid X \stackrel{d}{=} X'\} .$$

PROOF. Consider any $[X], [X'] \in \underline{\text{RV}}(A)(\Omega)$.

Suppose we have $[u], [u'] : \Omega' \rightarrow \Omega$ with $[X] \cdot [u] = [X'] \cdot [u']$, i.e., $X \circ u =_{\text{a.s.}} X' \circ u'$. Then $(X \circ u)_*(P_{\Omega'}) = (X' \circ u')_*(P_{\Omega'})$. Whence

$$X_*(P_{\Omega}) = X_*(u_*(P_{\Omega'})) = X'_*(u'_*(P_{\Omega'})) = X'_*(P_{\Omega}) ,$$

which shows $X \stackrel{d}{=} X'$.

Conversely, suppose $X \stackrel{d}{=} X'$; i.e., $X_*(P_{\Omega}) = X'_*(P_{\Omega})$. We write Ω_A for the SBP space given by A together with the probability measure $P_S := X_*(P_{\Omega})$. With this probability measure, the functions $X : \Omega \rightarrow \Omega_A$ and $X' : \Omega \rightarrow \Omega_A$ are morphisms in $\mathbb{S}\mathbb{B}\mathbb{P}$. By confluence, there exist $p, q : \Omega' \rightarrow \Omega$ such that $X \circ p =_{\text{a.s.}} X' \circ q$, which implies $[X] \cdot [p] = [X'] \cdot [q]$. So indeed $([X], [X']) \in \sim_{\underline{\text{RV}}(A)}(\Omega)$. \square

The remaining form of atomic formula in our logic is conditional independence. Proposition 8.18 below shows that atomic conditional independence is indeed interpreted as the probabilistic relation of conditional independence (Definition 8.7). Before this, in order to be able to make sense of the relation of atomic conditional independence, we need to verify that the sheaves $\underline{\text{RV}}(A)$ have supports (Definition 7.1).

PROPOSITION 8.17. *For any standard Borel space A , it holds that $\underline{\text{RV}}(A)$ has supports.*

PROOF. Consider any $[X] \in \underline{\text{RV}}(A)(\Omega)$. Define a standard Borel probability space by

$$\Omega_X := A \text{ with probability measure } P_{\Omega_X} := X_*(P_{\Omega}) .$$

It is easily checked that $(\Omega_X, [X], [x \mapsto x])$ is a support for $[X]$, using the almost surjectivity of $[X] : \Omega \rightarrow \Omega_X$, as in the proof of Proposition 8.9, for uniqueness. \square

PROPOSITION 8.18. *For any SBSs A, B, C , the atomic conditional independence subsheaf*

$$\perp\!\!\!\perp_{\underline{\text{RV}}(A), \underline{\text{RV}}(B) \mid \underline{\text{RV}}(C)} \subseteq \underline{\text{RV}}(A) \times \underline{\text{RV}}(B) \times \underline{\text{RV}}(C)$$

from Theorem 7.10 satisfies:

$$\perp\!\!\!\perp_{\underline{\text{RV}}(A), \underline{\text{RV}}(B) \mid \underline{\text{RV}}(C)}(\Omega) = \{([X], [Y], [Z]) \in (\underline{\text{RV}}(A) \times \underline{\text{RV}}(B) \times \underline{\text{RV}}(C))(\Omega) \mid X \perp\!\!\!\perp Y \mid Z\} .$$

1821 PROOF. Suppose $[X] \in \underline{\text{RV}}(A)(\Omega)$, $[Y] \in \underline{\text{RV}}(B)(\Omega)$ and $[Z] \in \underline{\text{RV}}(C)(\Omega)$ are such that $X \perp\!\!\!\perp Y \mid Z$ according to
 1822 Definition 8.7. Define
 1823

$$\begin{aligned} 1824 \quad \Omega_X &:= A \times C \text{ with probability measure } P_{\Omega_X} := (X, Z)_*(P_{\Omega}) \\ 1825 \quad \Omega_Y &:= B \times C \text{ with probability measure } P_{\Omega_Y} := (Y, Z)_*(P_{\Omega}) \\ 1826 \quad \Omega_Z &:= C \text{ with probability measure } P_{\Omega_Z} := Z_*(P_{\Omega}). \\ 1827 \end{aligned}$$

1829 Then the hybrid diagram below, shows that the triple $([X], [Y], [Z])$ belongs to the atomic conditional independence
 1830 relation $\perp\!\!\!\perp_{\underline{\text{RV}}(A), \underline{\text{RV}}(B) \mid \underline{\text{RV}}(C)}(\Omega)$.
 1831

$$\begin{array}{ccccc} 1832 & \Omega & \xrightarrow{[(X,Z)]} & \Omega_X & \xrightarrow{[(x,z) \mapsto (x,z)]} \underline{\text{RV}}(A) \times \underline{\text{RV}}(C) \\ 1833 & \downarrow [(Y,Z)] & \perp\!\!\!\perp & \downarrow \pi_2 & \\ 1834 & \Omega_Y & \xrightarrow{\pi_2} & \Omega_Z & \\ 1835 & & \downarrow [(y,z) \mapsto (y,z)] & \searrow [z \mapsto z] & \\ 1836 & & & \Omega_Z & \\ 1837 & & \xrightarrow{\pi_2} & & \underline{\text{RV}}(C) \\ 1838 & & & & \downarrow \pi_2 \\ 1839 & & & & \underline{\text{RV}}(B) \times \underline{\text{RV}}(C) \xrightarrow{\pi_2} \underline{\text{RV}}(C) \\ 1840 \end{array}$$

1841 In this diagram, $(\Omega_Z, [Z], [z \mapsto z])$ is support for $[Z]$, by the definition of Ω_Z , and the top-left square is independent,
 1842 because $(X, Z) \perp\!\!\!\perp (Y, Z) \mid Z$ holds, which follows from $X \perp\!\!\!\perp Y \mid Z$.
 1843

1844 Conversely, suppose $([X], [Y], [Z]) \in \perp\!\!\!\perp_{\underline{\text{RV}}(A), \underline{\text{RV}}(B) \mid \underline{\text{RV}}(C)}(\Omega)$. Defining Ω_X , Ω_Y and Ω_Z as above, we have that
 1845 $(\Omega_X, [(X, Z)], [(x, z) \mapsto (x, z)])$ is support for $[(X, Z)]$ and $(\Omega_Y, [(Y, Z)], [(y, z) \mapsto (y, z)])$ is support for $[(Y, Z)]$
 1846 $(\Omega_Z, [Z], [z \mapsto z])$ is support for $[Z]$. So, by Lemma 7.9, these supports fit into the hybrid diagram above. Since the
 1847 top-left square is independent, we have $(X, Z) \perp\!\!\!\perp (Y, Z) \mid Z$. From this, $X \perp\!\!\!\perp Y \mid Z$ follows, as required. \square
 1848

9 The Schanuel topos

1851 We give a very condensed outline, without proofs, of one more example in which we have an atomic sheaf logic of
 1852 equivalence and conditional independence: the Schanuel topos, which is equivalent to the category of nominal sets of
 1853 Gabbay and Pitts [14, 35].
 1854

1855 Let \mathbb{I} be (a small version of) the category whose objects are finite sets and whose morphisms are injective functions.
 1856 We consider the topos of atomic sheaves over the category \mathbb{I}^{op} . Since all maps in \mathbb{I} are obviously monomorphic, all maps
 1857 in \mathbb{I}^{op} are epimorphic.
 1858

1859 PROPOSITION 9.1. *The category \mathbb{I}^{op} carries independent pullback structure satisfying the descent property, and it has
 1860 pairings.*

1863 DESCRIPTION OF STRUCTURE. Define a commuting square in \mathbb{I}^{op} to be *independent* if the associated square (with
 1864 opposite orientation) of functions in \mathbb{I} is a pullback in \mathbb{I} (or equivalently in **Set**). A commuting square in \mathbb{I}^{op} is then an
 1865 independent pullback if and only if the associated square of functions in \mathbb{I} is a pushout in **Set** (but not necessarily in
 1866 \mathbb{I}). Every cospan in \mathbb{I}^{op} completes to an independent pullback by taking the pushout in **Set** of the associated span of
 1867 functions in \mathbb{I} .
 1868

1869 PROPOSITION 9.2. *The category \mathbb{I}^{op} has pairings.*

1873 DESCRIPTION OF STRUCTURE. A span in \mathbb{I}^{op} gives rise to a cospan of functions in \mathbb{I} . The pairing in \mathbb{I}^{op} is given by the
 1874 pushout in **Set** of the pullback in \mathbb{I} (or **Set**) of this cospan of functions. \square
 1875

1876 A presheaf $P \in \text{Psh}(\mathbb{I}^{\text{op}})$ is just a covariant functor $P: \mathbb{I} \rightarrow \text{Set}$. The description of independent squares above, means
 1877 that Theorem 6.6, in the case of $\mathbb{C} = \mathbb{I}^{\text{op}}$, specialises to the well-known characterisation that a presheaf $P \in \text{Psh}(\mathbb{I}^{\text{op}})$ is
 1878 an atomic sheaf if and only if the covariant functor $P: \mathbb{I} \rightarrow \text{Set}$ preserves pullbacks (see, e.g., [23, A 2.1.11(h)]). This
 1880 property enables the result below to be established by constructing supports in \mathbb{I}^{op} as a multiple pullbacks in \mathbb{I} over all
 1881 representable factorisations, of which there are only finitely many.
 1882

1883 PROPOSITION 9.3. *Every atomic sheaf in $\text{Sh}_{\text{at}}(\mathbb{I}^{\text{op}})$ has supports.*

1885 For a sheaf \underline{A} in $\text{Sh}_{\text{at}}(\mathbb{I}^{\text{op}})$, the support of an element $x \in \underline{A}(X)$ corresponds to a smallest subset $\text{supp}(x) \subseteq X$ for
 1886 which there exists $y \in \underline{A}(\text{supp}(x))$ such that $x = y \cdot i$, where $i: X \rightarrow \text{supp}(x)$ in \mathbb{I}^{op} is given by the inclusion function
 1887 $\text{supp}(x) \rightarrow X$. Proposition 9.3 is well known. For example, it plays a key role in Fiore's presentation of $\text{Sh}_{\text{at}}(\mathbb{I}^{\text{op}})$ as
 1888 a Kleisli category [13, 30]. An analogous property is also prominent in presentations of the equivalent category of
 1889 nominal sets [14, 35].
 1890

1892 PROPOSITION 9.4. *For any \underline{A} in $\text{Sh}_{\text{at}}(\mathbb{I}^{\text{op}})$, the atomic equivalence subsheaf $\sim_{\underline{A}} \subseteq \underline{A} \times \underline{A}$ from Theorem 5.1 satisfies:*

$$\sim_{\underline{A}}(X) = \{(x, y) \in (\underline{A} \times \underline{A})(X) \mid \exists X \xrightarrow{i} X. \quad y = x \cdot i\} .$$

1896 PROPOSITION 9.5. *For any $\underline{A}, \underline{B}, \underline{C}$ in $\text{Sh}_{\text{at}}(\mathbb{I}^{\text{op}})$, the atomic conditional independence subsheaf*

$$\perp\!\!\!\perp_{\underline{A}, \underline{B} \mid \underline{C}} \subseteq \underline{A} \times \underline{B} \times \underline{C}$$

1899 *from Theorem 7.10 satisfies:*

$$\perp\!\!\!\perp_{\underline{A}, \underline{B} \mid \underline{C}}(X) = \{(x, y, z) \in (\underline{A} \times \underline{B} \times \underline{C})(X) \mid \text{supp}(x) \cap \text{supp}(y) \subseteq \text{supp}(z)\} .$$

10 Discussion and related work

10.1 Relationship with (multi)team semantics

1907 Our main running example throughout the paper has been the category of atomic sheaves over the category Sur , in
 1908 which the interpretations of atomic equivalence and conditional independence, when applied to the sheaves $\text{NV}(A)$ of
 1909 nondeterministic variables, coincide with the multiteam interpretations of those relations from the *(in)dependence logics*
 1910 of [11, 17, 42]. For our logic, we use the canonical internal logic of an atomic sheaf topos, whose semantics is provided
 1911 by the forcing relation of Figure 2, and whose underlying logic is ordinary classical logic.
 1912

1913 In our route to atomic sheaf logic in Sections 2–4, the use of multiteams seems essential. Indeed, it is the presentation
 1914 of multiteams as finite-fibred functions in Section 2 that forms the basis for the connection with the category Sur ,
 1915 whence with atomic sheaves. This contrasts with the majority of work on (in)dependence logic, from [17, 42] onwards,
 1916 which is largely based on teams rather than on multiteams. It is accordingly worth observing, that it is possible to
 1917 reformulate the atomic sheaf logic of Figure 2 directly in terms of teams. To see this, note that any finite team trivially
 1918 gives rise to a canonical finite multiteam, in which every assignment has multiplicity 1. Conversely, the support of any
 1919 finite multiteam is a team. Under the correspondence between \mathcal{V} -multiteams, and \mathcal{V} -assignments of nondeterministic
 1920 variables, discussed in Section 2, we can reformulate these two statements in the following way. Every finite \mathcal{V} -team
 1921 gives rise to $\underline{\rho}: \mathcal{V} \rightarrow (\Omega \rightarrow A)$ enjoying the *team property*: for all $\omega, \omega' \in \Omega$, if $\underline{\rho}(x)(\omega) = \underline{\rho}_S(x)(\omega')$, for all $x \in \mathcal{V}$, then
 1922

¹⁹²⁵ $\omega = \omega'$. Moreover, for every \mathcal{V} -multiteam $\underline{\rho}' : \mathcal{V} \rightarrow (\Omega' \rightarrow A)$ there exists a unique up to isomorphism $q : \Omega' \rightarrow \Omega$
¹⁹²⁶ and $\underline{\rho} : \mathcal{V} \rightarrow (\Omega \rightarrow A)$ such that $\underline{\rho}$ satisfies the team property and $\underline{\rho}' = \underline{\rho} \cdot q$. It thus follows from the sheaf property
¹⁹²⁷ of forcing (Proposition 4.8) that the behaviour of the relation $\Omega \Vdash_{\underline{\rho}} \Phi$ in $\text{Sh}_{\text{at}}(\mathbb{S}\text{ur})$, for any formula Φ , is determined
¹⁹²⁸ entirely by its behaviour on teams $\underline{\rho}$. Moreover, it is easy to unwind the clauses in Figure 2 and to reformulate them
¹⁹²⁹ directly in terms of ordinary teams qua sets of assignments. Thus atomic sheaf logic over $\mathbb{S}\text{ur}$ could equivalently be
¹⁹³⁰ presented in terms of teams rather than multiteams.
¹⁹³¹

¹⁹³² If one carries out such a reformulation in the case of conjunction and of the existential quantifier, one obtains the
¹⁹³³ standard team interpretation of the former [42], and the *lax* interpretation of the latter, which is often the preferred
¹⁹³⁴ team interpretation [17, 18]. The clauses for the other connectives and for the universal quantifier are different however.
¹⁹³⁵ Whereas the clauses in Figure 2 validate the laws of classical logic, it is well known that the standard team semantics of
¹⁹³⁶ the other connectives and the universal quantifier leads to some logically exotic behaviour. For example, disjunction is
¹⁹³⁷ not an idempotent operation. Abramsky and Väänänen [1] provide an illuminating explanation for such behaviour,
¹⁹³⁸ by showing that the dependence logic connectives and quantifiers can be naturally understood as fitting into the
¹⁹³⁹ framework of Pym and O’Hearn’s *logic of bunched implications* (BI) [32, 36]. We now review this perspective and then
¹⁹⁴⁰ discuss how it might be adapted to atomic sheaf logic.
¹⁹⁴¹

¹⁹⁴² The approach of [1] is based on Lawvere’s notion of *hyperdoctrine* [26, 34]. Recall that the contravariant poswerset
¹⁹⁴³ functor P on sets, can be viewed as a functor $P : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{Pos}$, where \mathbf{Pos} is the category of partially ordered sets and
¹⁹⁴⁴ monotone functions. Specifically, P maps any set X to its set of subsets partially ordered by subset inclusion.
¹⁹⁴⁵ The functor $P : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{Pos}$ is then a hyperdoctrine. Propositional logic for propositions over a set X is modelled by
¹⁹⁴⁶ the boolean algebra structure on $P(X)$. For any function $f : X \rightarrow Y$, the *reindexing function* $P(f) := f^{-1} : P(Y) \rightarrow P(X)$
¹⁹⁴⁷ preserves the boolean algebra structure. The quantifiers $\exists : P(X \times Y) \rightarrow P(X)$ and $\forall : P(X \times Y) \rightarrow P(X)$, quantifying
¹⁹⁴⁸ over a set Y , are modelled as left and right adjoints respectively to the monotone function (considered qua functor)
¹⁹⁴⁹ $\pi_1^{-1} : P(X) \rightarrow P(X \times Y)$, where $\pi_1 : X \times Y \rightarrow X$ is the projection map.
¹⁹⁵⁰

¹⁹⁵¹ The main construction in [1], adapts the above hyperdoctrine for classical logic to team semantics, by composing
¹⁹⁵² $P : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{Pos}$ with the functor $\mathcal{L} : \mathbf{Pos} \rightarrow \mathbf{Pos}$ given by the operation \mathcal{L} that maps any partial order B to its lattice
¹⁹⁵³ $\mathcal{L}(B)$ of down-closed sets. The composite functor $\mathcal{L}P : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{Pos}$ then has the following properties. For every set X ,
¹⁹⁵⁴ the fibre poset $\mathcal{L}P(X)$ is, in a canonical way, a BI algebra, that is an algebraic model of the *logic of bunched implications*
¹⁹⁵⁵ BI [32, 36]. In the case $X = A^{\mathcal{V}}$, the elements of $\mathcal{L}P(A^{\mathcal{V}})$ are precisely down-closed (in the subset ordering) sets of
¹⁹⁵⁶ A -valued teams with variable set \mathcal{V} . Each connective of BI is modelled algebraically as a function of appropriate arity
¹⁹⁵⁷ on $\mathcal{L}P(A^{\mathcal{V}})$. For example, the *multiplicative conjunction* \otimes , is modelled as a certain canonically generated function
¹⁹⁵⁸ $\otimes : \mathcal{L}P(A^{\mathcal{V}}) \times \mathcal{L}P(A^{\mathcal{V}}) \rightarrow \mathcal{L}P(A^{\mathcal{V}})$. Writing Φ and Ψ for elements of $\mathcal{L}P(A^{\mathcal{V}})$ (which can be thought of as an
¹⁹⁵⁹ abstract set of propositions), and writing $S \Vdash \Phi$ to mean $S \in \Phi$, the function \otimes can be characterised by
¹⁹⁶⁰

$$S \Vdash \Phi \otimes \Psi \Leftrightarrow \exists T, U, S = T \cup U \text{ and } T \Vdash \Phi \text{ and } U \Vdash \Psi.$$

¹⁹⁶¹ This is exactly the semantic clause for the *disjunction* connective of team semantics. The exotic behaviour of the
¹⁹⁶² disjunction of dependence logic is thus nicely explained as a manifestation of the expected behaviour of the mul-
¹⁹⁶³ tiplicative conjunction of BI, whose multiplicative connectives have a natural resource-sensitive interpretation. A
¹⁹⁶⁴ further consequence of the hyperdoctrine construction in [1] is that the embedding of dependence logic in BI enriches
¹⁹⁶⁵ the former with additional logical connectives, such as both additive (intuitionistic) and multiplicative implications.
¹⁹⁶⁶ Lastly, the hyperdoctrine formulation of dependence logic provides an elegant explanation for the team semantics
¹⁹⁶⁷

1977 interpretation of the quantifiers \exists and \forall : $\mathcal{L}\mathbf{P}(A^{\mathcal{V}^{\Psi}\{x\}}) \rightarrow \mathcal{L}\mathbf{P}(A^{\mathcal{V}})$, which are characterised in the desired way [26, 34]
 1978 as respectively left and right adjoints to $\mathcal{L}\mathbf{P}(\rho \mapsto \rho|_{\mathcal{V}}) : \mathcal{L}\mathbf{P}(A^{\mathcal{V}}) \rightarrow \mathcal{L}\mathbf{P}(A^{\mathcal{V}^{\Psi}\{x\}})$.
 1979

1980 The above hyperdoctrine construction from [1] works for the original dependence logic [42], but not for independence
 1981 logic [17], because teams satisfying independence atoms are not down-closed in the subset order. This means that the
 1982 \mathcal{L} functor cannot be used to interpret formulas involving independence. An alternative is to combine the contravariant
 1983 powerset functor \mathbf{P} with the covariant powerset functor $\mathbf{P}_!$ (with direct image as its functorial action). It turns out that if
 1984 one considers the composition in the order $\mathbf{P}\mathbf{P}_! : \mathbf{Set}^{\mathbf{op}} \rightarrow \mathbf{Pos}$, then the left and right adjoints to the monotone function
 1985 $\mathbf{P}\mathbf{P}_!(\rho \mapsto \rho|_{\mathcal{V}}) : \mathbf{P}\mathbf{P}_!(A^{\mathcal{V}}) \rightarrow \mathbf{P}\mathbf{P}_!(A^{\mathcal{V}^{\Psi}\{x\}})$ correspond respectively to the existential and universal quantifier with
 1986 (the team version of) the forcing clauses from Figure 2. Further, the boolean algebra structure on $\mathbf{P}\mathbf{P}_!(A^{\mathcal{V}})$ corresponds
 1987 to (the team version of) the forcing clauses for the propositional connectives in Figure 2, and this structure is preserved
 1988 by all *reindexing maps* $\mathbf{P}\mathbf{P}_!(f)$. The hyperdoctrine $\mathbf{P}\mathbf{P}_! : \mathbf{Set}^{\mathbf{op}} \rightarrow \mathbf{Pos}$ thus recovers the team version of atomic sheaf
 1989 logic as in Figure 2. It would be interesting to investigate this construction in more detail, for example to explore how
 1990 independence and equivalence formulas interact with the hyperdoctrine formulation, and also the extent to which the
 1991 logic BI logic is relevant in this picture. Both points are potentially subtle. The standard hyperdoctrine desideratum
 1992 that logical structure should be preserved by reindexing maps provides a constraint on which atomic primitives are
 1993 admissible. Moreover, the relevance of BI logic is less *a priori* apparent than in [1], because the switch in the order of
 1994 composition ($\mathbf{P}\mathbf{P}_!$ has the covariant functor as the inner functor, whereas $\mathcal{L}\mathbf{P}$ has its covariant functor as the outer
 1995 functor) means that the outermost functor is no longer given by a canonical BI-algebra construction.
 1996

1997 A different source of exotic behaviour in (in)dependence logics concerns interaction between the universal quantifier
 1998 and (in)dependence atoms. One particularly striking example is provided by the sentence below.
 1999

$$2002 \quad \forall x^A, \forall y^B. (x^A \perp y^B) \quad (41)$$

2004 According to the usual team semantics of the universal quantifier, the above sentence is valid. Nevertheless, one can
 2005 easily exhibit example teams S for which it is not the case that $S \models x^A \perp y^B$, and rightly so, because there would be little
 2006 point in independence logic if independence were a universally valid relation. We view the validity of (41) (and other
 2007 examples like it) as showing that if one is to use (in)dependence logic as a basis for reasoning about (in)dependence
 2008 properties then the associated rules of inference will have to be unusual.
 2009

2010 Nevertheless, independence logics and their team semantics have been successfully applied in the direction of
 2011 reasoning about dependence and conditional independence. For example, Hannula and Kontinen axiomatise the valid
 2012 implications involving *inclusion* and *embedded multivalued dependencies* in database theory in terms of inclusion and
 2013 conditional independence formulas with their team semantics [18]. An interesting observation about this work is
 2014 that it takes place in the fragment of independence logic comprising conjunction and (lax) existential quantification
 2015 as the only logical operators. Since these are exactly the logical operators for which the semantic interpretations in
 2016 independence logic and atomic sheaf logic coincide, the same development can be imported verbatim into atomic sheaf
 2017 logic in $\mathbf{Sh}_{\text{at}}(\mathbb{S}\text{ur})$ extended with the inclusion relation (which indeed defines a subsheaf of $\underline{\mathbf{NV}}(A) \times \underline{\mathbf{NV}}(A)$). One
 2018 advantage of such a reformulation is that the axiomatised rules of inference in [18] can be expressed as individual
 2019 formulas, using the general implication connective of atomic sheaf logic, rather than left as entailments. For example,
 2020 the rule of *inclusion introduction*, which concerns the inclusion relation, has an obvious (derivable) analogue for the
 2021 equivalence (equiextension) relation, namely: if one has already derived an equivalence formula $\vec{x} \sim \vec{x}'$ then one can
 2022 infer the formula $\exists y^A. (\vec{x}, y^A \sim \vec{x}', y^A)$. In atomic sheaf semantics, this rule can be formulated as an implication.
 2023 Indeed, it is none other than the *transfer principle* (16) from Figure 3, valid in any atomic sheaf topos. The same transfer
 2024

2029 principle can also be found in mainstream probability theory. The interpretation of (16) in the category $\text{Sh}_{\text{at}}(\mathbb{S}\mathbb{B}\mathbb{P}_0)$ of
 2030 probability sheaves is very close to the *transfer theorem* of [24, Theorem 5.10], and arguably captures the essence of
 2031 that theorem in logical form.
 2032

2033 The interpretation of atomic sheaf logic in $\text{Sh}_{\text{at}}(\mathbb{S}\mathbb{B}\mathbb{P}_0)$ also connects with a body of work on adapting team semantics
 2034 to probability-based scenarios. For example, an A -valued *measure team* in [21] is a measurable map $\Omega \rightarrow (\mathcal{V} \rightarrow A)$,
 2035 for some probability space Ω and set of variables \mathcal{V} . This can equivalently be presented as a map $\mathcal{V} \rightarrow (\Omega \rightarrow A)$,
 2036 which is almost the same thing as a variable assignment in atomic sheaf logic over $\mathbb{S}\mathbb{B}\mathbb{P}_0$, i.e., a mapping from variables
 2037 to elements of $\text{RV}(A)(\Omega)$. There are however two key differences: random variables in $\text{RV}(A)$ are identified up to
 2038 almost sure equality, and objects in $\mathbb{S}\mathbb{B}\mathbb{P}_0$ are restricted to probability spaces Ω that are standard Borel. Although
 2039 these differences may seem minor, they are crucial to the interpretation of atomic sheaf logic in $\text{Sh}_{\text{at}}(\mathbb{S}\mathbb{B}\mathbb{P}_0)$. For
 2040 example, it is because of the restriction to standard Borel spaces that the category $\text{Sh}_{\text{at}}(\mathbb{S}\mathbb{B}\mathbb{P}_0)$ is coconfluent. The
 2041 failure of coconfluence for general probability spaces makes it difficult to extend the measure-team semantics of atomic
 2042 formulas in [21] to include the logical connectives and atoms of independence logic. In the literature, such extensions
 2043 have been given only for probabilistic teams based on discrete probability [12]. It is worth remarking that discrete
 2044 probability fits in equally well with the approach of the present paper. One can consider atomic sheaves over the
 2045 category of finite probability spaces, or alternatively over the category of countable probability spaces, both of which
 2046 are full subcategories of $\mathbb{S}\mathbb{B}\mathbb{P}_0$. Such examples further substantiate our thesis that atomic sheaf categories provide a
 2047 unifying framework configurable to diverse settings for conditional independence. It would be interesting to compare
 2048 our approach with the semiring-based framework of [4], which provides a different unifying approach to varieties of
 2049 team semantics, which encompasses both ordinary teams and discrete probabilistic teams.
 2050

2051 10.2 Computer science applications

2052 In this section we outline possible computer science applications for atomic sheaf logic. Rather than trying to be
 2053 comprehensive, we instead focus on a few illustrative examples, beginning with reasoning about probabilistic programs.
 2054

2055 An almost surely terminating imperative probabilistic program C can be modelled as a probabilistic map between
 2056 states, that is a function $\llbracket C \rrbracket_S : \text{State} \rightarrow \mathcal{D}(\text{State})$, where $\mathcal{D}(\text{State})$ is the set of probability distributions over states.
 2057 Alternatively, but equivalently, it can be viewed as a transformation $\llbracket C \rrbracket_T : \mathcal{D}(\text{State}) \rightarrow \mathcal{D}(\text{State})$ mapping a probability
 2058 distribution on initial states to the induced probability distribution on final states [25]. There is also a third related
 2059 possibility. One can view the program as a transformation $\llbracket C \rrbracket_R$ mapping an initial *random state* $\Sigma : \Omega \rightarrow \text{State}$, for
 2060 some sample space Ω , to a final random state T [22]. However, because the program C may make use of randomness
 2061 not present in Ω , the sample space for T has to be, in general, an *extension* of Ω , meaning that $T : \Omega' \rightarrow \text{State}$ for
 2062 some suitable sample space Ω' equipped with a probability preserving map $q : \Omega' \rightarrow \Omega$. While the idea of modelling
 2063 programs as random-state transformers is very natural, some careful bookkeeping is required to deal with the change
 2064 of sample space. Such bookkeeping can be avoided entirely if one uses the alternative approach of defining the random-
 2065 state-transformer semantics in the atomic sheaf logic of $\text{Sh}_{\text{at}}(\mathbb{S}\mathbb{B}\mathbb{P}_0)$. Under this approach $\llbracket C \rrbracket_R$ is formulated as a
 2066 relation $\llbracket C \rrbracket_R \subseteq \text{RV}(\text{State}) \times \text{RV}(\text{State})$ satisfying: for any random initial state Σ on which C terminates, there exists a
 2067 random final state T such that $\Sigma \llbracket C \rrbracket_R T$ and, for any random state T' , it holds that $\Sigma \llbracket C \rrbracket_R T'$ implies $\Sigma, T \sim \Sigma, T'$. The
 2068 key point here is that no sample spaces need to be specified, because, from the viewpoint of atomic sheaf logic, sample
 2069 spaces are implicit, and the extension of sample spaces is likewise taken care of implicitly by the semantics of the
 2070 existential quantifier. Not only is such an implicit-sample-space style of manipulating random variables intuitive, it
 2071 also avoids the bookkeeping required when dealing with explicit sample space extensions. For example, in [22], a
 2072

2081 property called *relative tightness* is identified as useful property of probabilistic Hoare-triple-like specifications. Such a
 2082 specification $\{\Phi\}C\{\Psi\}$ asserts that, if the precondition Φ holds for a random initial state Σ , and if C terminates from
 2083 Σ , then the postcondition Ψ holds for the induced random final state T . The property of relative tightness asserts
 2084 that the probabilistic behaviour of the random state T on the variables $\text{FV}(\Psi)$ relevant to determining the truth of Ψ ,
 2085 depends only on the value of the initial state Σ on $\text{FV}(\Phi)$. This can be formulated in a simple way as the statement
 2086 about conditional independence on the left below
 2087

$$T_{\text{FV}(\Psi)} \perp \Sigma \mid \Sigma_{\text{FV}(\Phi)} \quad T_{\text{FV}(\Psi)} \perp \Sigma \circ q \mid \Sigma_{\text{FV}(\Phi)} \circ q,$$

2089 where $\Sigma_{\text{FV}(\Psi)}$ and $T_{\text{FV}(\Psi)}$ denote the initial and final random states restricted to the specified variable sets. For contrast,
 2090 we include on the right above the statement of relative tightness that appears in [22], which shows the need for
 2091 bookkeeping (in this case, composition with q) when the standard mathematical formulation of random variables with
 2092 explicit sample spaces is used. For a more involved example of the efficiency afforded by the implicit-sample-space
 2093 approach of atomic sheaf logic, we consider how the while statement on the left below is approximated by iterating the
 2094 conditional statement on the right.
 2095

$$\text{while } B \text{ do } C \quad \text{if } B \text{ then } C \text{ else skip}$$

2096 Working within atomic sheaf logic, suppose the while statement terminates in random final state T from a random
 2097 initial state Σ . Then defining $\Sigma_0 = \Sigma$ and letting Σ_{n+1} be such that $\Sigma_n \llbracket C \rrbracket_R \Sigma_{n+1}$, we obtain a sequence $(\Sigma_n)_{n \geq 0}$ of
 2098 random states that converges almost surely to the random state T . The resulting convergence property $\Sigma_n \rightarrow T$ is used
 2099 in ongoing work extending [22] to prove the correctness of a partial correctness rule for while loops in a probabilistic
 2100 program logic. The formulation of the same convergence statement with explicit sample states is unwieldy as it involves
 2101 a sequence $\Omega_0 \xleftarrow{q_0} \Omega_1 \xleftarrow{q_1} \Omega_2 \xleftarrow{q_2} \dots$ of sample space extensions for the random states $(\Sigma_n)_n$, as well as a cone (in the
 2102 category-theoretic sense) $(\Omega_n \xleftarrow{r_n} \Omega')_n$ for the sequence, where Ω' is the sample space for T . With this scaffolding in
 2103 place, the convergence property can be stated as $\Sigma_n \circ r_n \rightarrow T$.
 2104

2105 We have outlined above how atomic sheaf logic might be applied to formulate a random-state-based operational
 2106 semantics for imperative probabilistic programs. Another potential application is to the assertion logics of Hoare-like
 2107 program logics for probabilistic programs, in particular to *probabilistic separation logic (PSL)*. PSL was first introduced
 2108 in [5] as an approach to verifying probabilistic programs using a version of the *separating conjunction* of separation
 2109 logic [31, 43] to reason about probabilistic independence. The modular style of reasoning is supported by a version of
 2110 the *frame rule* of separation logic, which, in the case of probabilistic separation logic, allows certain statements about
 2111 probabilistic independence to be inferred. The paper [5] presents several applications to the verification of cryptographic
 2112 protocols. Subsequent work has extended the approach to reason about negative dependencies [3], adapted it to a
 2113 probabilistic functional language [27] and incorporated conditional independence [2, 27]. In all the aforementioned
 2114 works, the assertion logic has been given as an instance of the *logic of bunched implications (BI)* with a Kripke-style
 2115 semantics defined over a partially ordered *resource monoid* [36]. This leads to an intuitionistic but not classical assertion
 2116 logic. It seems likely that one can obtain a classical assertion logic, by replacing the Kripke-style semantics of BI in a
 2117 partially ordered resource monoid with a category-based semantics utilising the forcing clauses of atomic sheaf logic.³
 2118

2119 ³one version of such a classical assertion logic appears in [22]. However, the very simple setting of abstract *semantic assertions* with no explicit quantifiers
 2120 in *op. cit.*, enables the category-theoretic genesis of the logic to be hidden. Its one remaining trace is the set of *footprint variables*, which corresponds to
 2121 the notion of support in the present paper.

Another connection with the logic of bunched implications comes from a fact that we have not developed in the present paper: every category \mathbb{C} with independent pullbacks and terminal object is symmetric monoidal, and its category $\text{Sh}_{\text{at}}(\mathbb{C})$ of atomic sheaves carries, in addition to its cartesian closed structure, a second symmetric monoidal closed structure \otimes_{Sh} derived, using the methods of [9], from the modoidal structure of \mathbb{C} . Categories with two such closed structures are category-theoretic models of BI [32]. In the case of $\text{Sh}_{\text{at}}(\mathbb{C})$, the monoidal structure is furthermore *affine*, hence it has projections $\underline{A} \leftarrow \underline{A} \otimes_{\text{Sh}} \underline{B} \rightarrow \underline{B}$. In the case that \underline{A} and \underline{B} have supports, then the projections are jointly monic and the resulting monomorphism

$$\underline{A} \otimes_{\text{Sh}} \underline{B} \rightarrowtail \underline{A} \times \underline{B}$$

is in fact isomorphic to $\perp\!\!\!\perp_{\underline{A}, \underline{B}} \subseteq \underline{A} \times \underline{B}$ given by the unconditional version of (20) (i.e., in which C is a terminal object). That is, the unconditional independence relation of the present paper is recovered as an instance of monoidal structure. This connection will be elaborated in a follow-up paper, where also the relationship with the monoidal category setting of [38] will be discussed. Indeed the notion of *local independence structure with local independent products* in *op. cit.* is equivalent to the independent pullback structure of Section 6, but with a much more involved axiomatisation in terms of fibred monoidal structure. The monoidal structure of \mathbb{C} provides another connection between the work of the present paper and varieties of separation logic including probabilistic separation logic, as elaborated by Li *et. al.* [28]. In their work, the Day monoidal product on presheaves [9] is used to model the separation of state into independent segments, whose probabilistic independence can be superimposed using a probability monad. As in our work, the notion of sheaf with supports, which was introduced independently in [28], plays a crucial role.

The category **Nom** of nominal sets of Gabbay and Pitts [14, 35] has found applications to reasoning about *names* in computer science. The monograph [35] presents many examples of such applications, together with pointers to the literature. One prominent application area is reasoning about abstract syntax for languages involving operators that bind variables.

As mentioned in Section 9, the category **Nom** is equivalent to the Schanuel topos, and so the relations of equivalence and conditional independence defined in Section 9 can be transferred to **Nom**. In **Nom**, the atomic equivalence relation of Proposition 9.4 is the equivalence relation of being in the same orbit. The special case of Proposition 9.5 corresponding to the relation of unconditional independence $x \perp\!\!\!\perp y$ is the relation of *separatedness* ($\text{supp}(x) \cap \text{supp}(y) = \emptyset$), which is a central relation of interest in the literature on nominal sets. The full conditional independence relation $x \perp\!\!\!\perp y \mid z$ is then a *relative* notion of separatedness ($\text{supp}(x) \cap \text{supp}(y) \subseteq \text{supp}(z)$), which first appeared in [38]. We believe that the atomic logic of equivalence and conditional independence developed in the present paper may, when transported to **Nom**, provide a convenient setting for reasoning about syntax with variable binding. Let us illustrate this using the untyped λ -calculus as an example.

There are several approaches to reasoning about syntax with variable binding. The first is to reason about *raw terms*, in which, for example, $\lambda x. x$ is distinguished from $\lambda y. y$ because the variable name differs. This leads to an awkward definition of substitution $M[x := N]$ that involves a non-canonical choice of bound-variable renaming, and does not provide a good foundation on which to base structured reasoning principles. Some arbitrariness can be avoided by imposing canonicity on bound-variables names, for example using de Bruijn indices. However, syntactic manipulations then involve arithmetic operations on indices, which means that proofs of syntactic properties are entangled with arithmetic proofs that are an artefact of the choice of representation and have no intrinsic connection to the syntactic properties being proved. An alternative, favoured in many informal expositions of syntax, is to work with *equivalence classes* of terms modulo α -equivalence instead of raw terms. This leads to a canonical definition of substitution, but

2185 has two drawbacks that are particularly significant if one wishes to formalise proofs. The first drawback is that all
 2186 term manipulations need to be proved compatible with the equivalence relation. Such proofs are often omitted from
 2187 informal expositions, but of course need to be given in a formal setting. The second drawback is that one loses the
 2188 structural-induction principle on terms that is derived from the inductive definition of raw terms.. These two issues can
 2189 be given a very elegant solution by defining syntax in the category of nominal sets. There is a functor called *name*
 2190 *abstraction* that can be used to give a direct inductive definition of the nominal set of terms modulo α -equivalence. This
 2191 definition comes with an associated principle of structural induction for reasoning about terms modulo α -equivalence,
 2192 and a principle of structural recursion that allows one to define functions that are automatically well-defined on
 2193 α -equivalence classes. This approach is more fully described in the monograph [35], which also contains pointers to the
 2194 wider literature. It seems fair to say, however, that this approach does not solve all the practical difficulties of reasoning
 2195 about binding operators. For example, the structural induction and recursion principles can be cumbersome to work
 2196 with, due to their side conditions involving concepts such as separatedness and freshness.
 2197

2198 We propose here an alternative approach to reasoning about syntax with binding operators in the category of
 2199 nominal sets. The idea is to reason directly about raw terms rather than about α -equivalence classes of terms, but to
 2200 use properties of the atomic-sheaf-logic equivalence and conditional independence relations to enable definitions and
 2201 reasoning to be carried out in an elegant structural way. To illustrate the proposal, let us consider untyped λ -terms
 2202 presented in the form $\Gamma \vdash M$, where Γ is a finite sequence of distinct names that are treated as free variables in term M .
 2203 The rules for generating such terms are:

$$\frac{}{\Gamma \vdash a \in \Gamma} \quad \frac{\Gamma \vdash M \quad \Gamma \vdash N}{\Gamma \vdash MN} \quad \frac{\Gamma, a \vdash M \quad a \notin \Gamma}{\Gamma \vdash \lambda a. M}$$

2204 Then the Γ -indexed relation $\{\equiv_\Gamma \subseteq \text{Term}_\Gamma \times \text{Term}_\Gamma\}_\Gamma$ of α -equivalence, where

$$\text{Term}_\Gamma := \{\Gamma \vdash M \mid \Gamma \vdash M \text{ is a term}\},$$

2205 can be defined as the smallest Γ -indexed congruence relation containing atomic equivalence $\{\sim_\Gamma \subseteq \text{Term}_\Gamma \times \text{Term}_\Gamma\}_\Gamma$
 2206 (i.e., orbit equality).⁴ Substitution $\Gamma \vdash M[a := N]$ can be specified as a function defined on any pair of terms $\Gamma, a \vdash M$
 2207 and $\Gamma \vdash N$ for which the conditional independence (i.e., relative separation property)

$$\Gamma, a \vdash M \perp \Gamma \vdash N \mid \Gamma$$

2208 holds, by simple structural recursion on the structure of the raw term $\Gamma, a \vdash M$. Of course, one would like substitution
 2209 to be defined on *all* suitable terms, not just on sufficiently separated ones. This is achieved, by defining substitution as a
 2210 ternary *relation* $\text{Sub}_{\Gamma,a} \subseteq \text{Term}_{\Gamma,a} \times \text{Term}_\Gamma \times \text{Term}_\Gamma$, by specifying that

$$\text{Sub}_{\Gamma,a}(\Gamma, a \vdash M, \Gamma \vdash N, \Gamma \vdash L)$$

2211 holds precisely when there exists $\Gamma \vdash N'$ such that $\Gamma \vdash N' \sim \Gamma \vdash N$ and $\Gamma, \{a\} \vdash M \perp \Gamma \vdash N' \mid \Gamma$ and $L = M[a := N']$. By
 2212 the independent existence principle (30), this relation is total in the sense that, for any M, N (for brevity we omit the
 2213 contexts) there exists L such that $\text{Sub}(M, N, L)$. The relation is also single-valued up to equivalence: if $\text{Sub}(M, N, L)$ and
 2214 $\text{Sub}(M, N, L')$ then it holds that $\Gamma \vdash L \sim \Gamma \vdash L'$. Preservation of α -equivalence, then follows in the form: if $M \equiv_{\Gamma,a} M'$
 2215 and $N \equiv_\Gamma N'$ and $\text{Sub}(M, N, L)$ and $\text{Sub}(M', N', L')$ then $L \equiv_\Gamma L'$, which can be established elegantly and abstractly
 2216 using the characterisation of α -equivalence given above.

2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236

⁴This characterisation depends on the use of terms with explicit contexts and on the restriction to contexts in which all names are distinct.

2237 A high-level summary of the above outlined approach is that one reasons with raw terms, making use of atomic sheaf
 2238 logic and its equivalence and conditional independence relations to systematically subsume the necessary renaming of
 2239 bound variables as instances of general logical principles.
 2240

2241 The fact that atomic sheaf logic applies both to nominal sets (via the equivalence with $\text{Sh}_{\text{at}}(\mathbb{I}^{\text{op}})$) and to probability
 2242 (via $\text{Sh}_{\text{at}}(\mathbb{S}\mathbb{B}\mathbb{P}_0)$) means that one can compare the two approaches to nominal syntax, the standard one in which terms
 2243 are α -equivalence classes and the proposed one using raw terms, using an analogy with probability theory. When
 2244 terms (with explicit context) are considered as α -equivalence classes, they are, in particular, equated up to atomic
 2245 equivalence (orbit equality). In the probabilistic setting of $\text{Sh}_{\text{at}}(\mathbb{S}\mathbb{B}\mathbb{P}_0)$, atomic equivalence is equality in distribution.
 2246 So reasoning with α -equivalence classes is analogous to doing probability with probability distributions. In contrast,
 2247 our proposal to reason with raw terms and make use of the atomic equivalence and conditional independence relations
 2248 is analogous to, in probability theory, reasoning with random variables and exploiting the relations of equality in law
 2249 and conditional independence between them. Certainly, in mainstream probability theory, reasoning with random
 2250 variables is usually considered more convenient than reasoning with probability distributions. It therefore seems worth
 2251 investigating whether our proposed approach to reasoning about syntax will have similar practical advantages over the
 2252 α -equivalence-class-based approach. It is intended to carry out some case studies in this direction as future research.
 2253

2254 10.3 Further work

2255 We end the paper with two questions for potential further investigation on the theory side, of which the second was
 2256 suggested by one of the journal referees. The first is to obtain a completeness theorem for the logic of equivalence and
 2257 conditional independence valid in atomic toposes. The second is to investigate whether atomic sheaf logic enjoys a
 2258 similar relationship to second-order logic as that enjoyed by dependence logic [42].
 2259

2260 Acknowledgments

2261 I thank Angus Macintyre for drawing my attention to dependence logic, and André Joyal, Paul-André Melliès, Dario
 2262 Stein and the anonymous reviewers of both conference and journal versions for helpful suggestions. I also thank
 2263 Terblanche Delpot, Willem Fouché and Paul and Petrus Potgieter for their hospitality in Pretoria in January 2023,
 2264 where half this paper was written. Paul Taylor’s diagram macros were used.
 2265

2266 References

- 2267 [1] Samson Abramsky and Jouko Väänänen. 2009. From IF to BI: a tale of dependence and separation. *Synthese* 167 (2009), 207–230. <https://doi.org/10.1007/s11229-008-9415-6>
- 2268 [2] Jialu Bao, Simon Docherty, Justin Hsu, and Alexandra Silva. 2021. A Bunched Logic for Conditional Independence. In *2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)*. 1–14. <https://doi.org/10.1109/LICS52264.2021.9470712>
- 2269 [3] Jialu Bao, Marco Gaboardi, Justin Hsu, and Joseph Tassarotti. 2022. A separation logic for negative dependence. *Proc. ACM Program. Lang.* 6, POPL, Article 57 (Jan. 2022), 29 pages. <https://doi.org/10.1145/3498719>
- 2270 [4] Timon Barlag, Miika Hannula, Juha Kontinen, Nina Pardal, and Jonni Virtema. 2023. Unified foundations of team semantics via semirings. In *Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning (Rhodes, Greece) (KR ’23)*. Article 8, 11 pages. <https://doi.org/10.24963/kb.2023/8>
- 2271 [5] Gilles Barthe, Justin Hsu, and Kevin Liao. 2019. A probabilistic separation logic. *Proc. ACM Program. Lang.* 4, POPL, Article 55 (dec 2019), 30 pages. <https://doi.org/10.1145/3371123>
- 2272 [6] Fredrik Dahlqvist, Vincent Danos, Ilias Garnier, and Ohad Kammar. 2016. Bayesian Inversion by Omega-Complete Cone Duality. In *27th International Conference on Concurrency Theory (CONCUR 2016) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 59)*, Josée Desharnais and Radha Jagadeesan (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 1:1–1:15. <https://doi.org/10.4230/LIPIcs.CONCUR.2016.1>
- 2273 [7] A. P. Dawid. 1979. Conditional Independence in Statistical Theory. *Journal of the Royal Statistical Society. Series B (Methodological)* 41, 1 (1979), 1–31. <http://www.jstor.org/stable/2984718>

2289 [8] A. P. Dawid. 2001. Separoids: A Mathematical Framework for Conditional Independence and Irrelevance. *Annals of Mathematics and Artificial*
 2290 *Intelligence* 32, 1 (2001), 335–372. <https://doi.org/10.1023/A:1016734104787>

2291 [9] Brian Day. 1970. *Construction of Biclosed Categories*. Ph.D. Dissertation.

2292 [10] C. Dellacherie and P.-A. Meyer. 2011. *Probabilities and Potential, C: Potential Theory for Discrete and Continuous Semigroups*. North-Holland
 2293 Mathematics Studies, Vol. 161. Elsevier Science.

2294 [11] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. 2018. Approximation and dependence via multiteam semantics.
 2295 *Annals of Mathematics and Artificial Intelligence* 83, 3 (2018), 297–320. <https://doi.org/10.1007/s10472-017-9568-4>

2296 [12] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. 2018. Probabilistic team semantics. In *International Symposium on
 2297 Foundations of Information and Knowledge Systems*. Springer, 186–206.

2298 [13] Marcelo Fiore and Matias Menni. 2005. Reflective Kleisli subcategories of the category of Eilenberg-Moore algebras for factorization monads.
 2299 *Theory and Applications of Categories [electronic only]* 15 (2005), 40–65. <http://eudml.org/doc/125160>

2300 [14] Murdoch J. Gabbay and Andrew M. Pitts. 2002. A New Approach to Abstract Syntax with Variable Binding. *Formal Aspects of Computing* 13, 3
 2300 (2002), 341–363. <https://doi.org/10.1007/s001650200016>

2301 [15] Dan Geiger, Azaria Paz, and Judea Pearl. 1991. Axioms and algorithms for inferences involving probabilistic independence. *Information and
 2302 Computation* 91, 1 (1991), 128–141. [https://doi.org/10.1016/0890-5401\(91\)90077-F](https://doi.org/10.1016/0890-5401(91)90077-F)

2303 [16] Dan Geiger and Judea Pearl. 1993. Logical and Algorithmic Properties of Conditional Independence and Graphical Models. *The Annals of Statistics*
 2304 21, 4 (1993), 2001 – 2021. <https://doi.org/10.1214/aos/1176349407>

2305 [17] Erich Grädel and Jouko Väänänen. 2013. Dependence and Independence. *Studia Logica* 101, 2 (2013), 399–410. <https://doi.org/10.1007/s11225-013-9479-2>

2306 [18] Miika Hannula and Juha Kontinen. 2016. A finite axiomatization of conditional independence and inclusion dependencies. *Information and
 2307 Computation* 249 (2016), 121–137. <https://doi.org/10.1016/j.ic.2016.04.001>

2308 [19] Jaakko Hintikka and Gabriel Sandu. 1989. Informational Independence as a Semantical Phenomenon. In *Logic, Methodology and Philosophy of
 2309 Science VIII*, Jens Erik Fenstad, Ivan T. Frolov, and Risto Hilpinen (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 126. Elsevier,
 2310 571–589. [https://doi.org/10.1016/S0049-237X\(08\)70066-1](https://doi.org/10.1016/S0049-237X(08)70066-1)

2311 [20] W. Hodges. 1997. Compositional Semantics for a Language of Imperfect Information. *Logic Journal of the IGPL* 5, 4 (1997), 539–563. <https://doi.org/10.1093/jigpal/5.4.539>

2312 [21] Tapani Hyttinen, Gianluca Paolini, and Jouko Väänänen. 2017. A logic for arguing about probabilities in measure teams. *Archive for Mathematical
 2313 Logic* 56, 5 (2017), 475–489. <https://doi.org/10.1007/s00153-017-0535-x>

2314 [22] Janez Ignacij Jereb and Alex Simpson. 2025. Safety, Relative Tightness and the Probabilistic Frame Rule. *Electronic Notes in Theoretical Informatics
 2315 and Computer Science* Volume 5 - Proceedings of MFPS XLI, Article 12 (Dec 2025). <https://doi.org/10.46298/entics.16743>

2316 [23] Peter T Johnstone. 2002. *Sketches of an elephant: a Topos theory compendium*. Oxford Univ. Press, New York, NY. <https://cds.cern.ch/record/592033>

2317 [24] Olav Kallenberg. 1997. *Foundations of Modern probability Theory* (first edition ed.). Springer Cham.

2318 [25] Dexter Kozen. 1981. Semantics of probabilistic programs. *J. Comput. System Sci.* 22, 3 (1981), 328–350. [https://doi.org/10.1016/0022-0000\(81\)90036-2](https://doi.org/10.1016/0022-0000(81)90036-2)

2319 [26] F. William Lawvere. 1969. Adjointness in Foundations. *Dialectica* 23, 3-4 (1969), 281–296. <https://doi.org/10.1111/j.1746-8361.1969.tb01194.x>
 arXiv:<https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1746-8361.1969.tb01194.x>

2320 [27] John M. Li, Amal Ahmed, and Steven Holtzen. 2023. Lilac: A Modal Separation Logic for Conditional Probability. *Proc. ACM Program. Lang.* 7, PLDI,
 2321 Article 112 (jun 2023), 24 pages. <https://doi.org/10.1145/3591226>

2322 [28] John M. Li, Jon Aytac, Philip Johnson-Freyd, Amal Ahmed, and Steven Holtzen. 2024. A Nominal Approach to Probabilistic Separation Logic. In
 2323 *39th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)*. ACM, New York, NY, USA. <https://doi.org/10.1145/3661814.3662135>

2324 [29] Saunders Mac Lane and Ieke Moerdijk. 1992. *Sheaves in Geometry and Logic a First Introduction to Topos Theory*. Springer New York, New York, NY.
 2325 <http://link.springer.com/book/10.1007/978-1-4612-0927-0>

2326 [30] Matias Menni. 2003. About \mathcal{N} -quantifiers. *Applied Categorical Structures* 11, 5 (2003), 421–445. <https://doi.org/10.1023/A:1025750816098>

2327 [31] Peter O’Hearn, John Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures. In *Computer Science Logic*,
 2328 Laurent Fribourg (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–19.

2329 [32] Peter W. O’Hearn and David J. Pym. 1999. The Logic of Bunched Implications. *The Bulletin of Symbolic Logic* 5, 2 (1999), 215–244. <http://www.jstor.org/stable/421090>

2330 [33] Judea Pearl and Azaria Paz. 1986. GRAPHOIDS: Graph-Based Logic for Reasoning about Relevance Relations OrWhen Would x Tell You More about
 2331 y If You Already Know z ? *Probabilistic and Causal Inference* (1986). <https://api.semanticscholar.org/CorpusID:262089256>

2332 [34] Andrew M Pitts. 2001. Categorical logic. In *Handbook of Logic in Computer Science: Volume 5. Algebraic and Logical Structures*. Oxford University
 2333 Press. <https://doi.org/10.1093/oso/9780198537816.003.0002> arXiv:<https://academic.oup.com/book/0/chapter/348287300/chapter-pdf/43264150/isbn-9780198537816-book-part-5.pdf>

2334 [35] Andrew M. Pitts. 2013. *Nominal Sets: Names and Symmetry in Computer Science*. Cambridge University Press.

2335 [36] David J. Pym, Peter W. O’Hearn, and Hongseok Yang. 2004. Possible worlds and resources: the semantics of BI. *Theoretical Computer Science* 315, 1
 2336 (2004), 257–305. <https://doi.org/10.1016/j.tcs.2003.11.020> Mathematical Foundations of Programming Semantics.

2337 [37] Alex Simpson. 2017. Probability Sheaves and the Giry Monad. <https://api.semanticscholar.org/CorpusID:11927690>

2338

2339

2340

2341 [38] Alex Simpson. 2018. Category-theoretic Structure for Independence and Conditional Independence. *Electronic Notes in Theoretical Computer Science* 336 (2018), 281–297. <https://doi.org/10.1016/j.entcs.2018.03.028> The Thirty-third Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXIII).

2342 [39] Alex Simpson. 2024. Equivalence and Conditional Independence in Atomic Sheaf Logic. In *Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science* (Tallinn, Estonia) (LICS '24). Association for Computing Machinery, New York, NY, USA, Article 70, 14 pages. <https://doi.org/10.1145/3661814.3662132>

2343 [40] Wolfgang Spohn. 1980. Stochastic independence, causal independence, and shieldability. *Journal of Philosophical Logic* 9, 1 (1980), 73–99. <https://doi.org/10.1007/BF00258078>

2344 [41] Sam Staton. 2009. Two Cotensors in One: Presentations of Algebraic Theories for Local State and Fresh Names. *Electronic Notes in Theoretical Computer Science* 249 (2009), 471–490. <https://doi.org/10.1016/j.entcs.2009.07.103> Proceedings of the 25th Conference on Mathematical Foundations of Programming Semantics (MFPS 2009).

2345 [42] Jouko Väänänen. 2007. *Dependence Logic: A New Approach to Independence Friendly Logic*. Cambridge University Press.

2346 [43] Hongseok Yang and Peter O'Hearn. 2002. A Semantic Basis for Local Reasoning. In *Foundations of Software Science and Computation Structures*, Mogens Nielsen and Uffe Engberg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 402–416.

2347

2348

2349

2350

2351

2352

2353

2354

2355

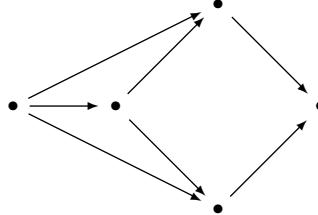
A Proof of Theorem 7.7

2356 Recall that Theorem 7.7 states that every sheaf in $\text{Sh}_{\text{at}}(\text{Sur})$ has supports. The main tool needed to prove this is
2357 Theorem A.1 below.

2361 THEOREM A.1. *Every atomic sheaf $\underline{P} \in \text{Sh}_{\text{at}}(\text{Sur})$ maps pushouts in Sur to pullbacks in Set .*

2364 The proof of Theorem A.1 given below builds on Theorem 6.6. When I discussed this work with André Joyal, he told me
2365 that he already knew Theorem A.1, and he kindly showed me his own proof, which is somewhat different in structure
2366 from the argument given below.

2367 Observe first that the category Sur has pushouts, and that these are defined as in Set . Observe also that, in any
2368 commuting diagram in Sur of the form below, the outer kite is a pushout if and only if the right-hand square is a
2369 pushout (because all maps in Sur are epimorphic).



2381 LEMMA A.2. *Suppose we have a commuting diagram as above in Sur . Let $P \in \text{Psh}(\text{Sur})$ be a separated presheaf. Then
2382 P maps the right-hand square to a pullback in Set if and only if it maps the outer kite to a pullback in Set .*

2384 PROOF. Easy. □

2388 PROOF OF THEOREM A.1. A relation $R \subseteq \Omega_X \times \Omega_Y$ is said to be *bitotal* if:

$$2390 \quad \forall \omega_X \in \Omega_X. \exists \omega_Y \in \Omega_Y, \omega_X R \omega_Y \text{ and } \forall \omega_Y \in \Omega_Y. \exists \omega_X \in \Omega_X, \omega_X R \omega_Y .$$

2393 Let $R \subseteq \Omega_X \times \Omega_Y$ be a bitotal relation. Then the projections $\Omega_X \xleftarrow{r} R \xrightarrow{r'} \Omega_Y$ form a span in $\mathbb{S}\text{ur}$. Construct
 2394 the pushout
 2395

$$\begin{array}{ccc} R & \xrightarrow{r} & \Omega_X \\ r' \downarrow & \lrcorner & \downarrow p \\ \Omega_Y & \xrightarrow{q} & \Omega_Z \end{array} \quad (42)$$

2401 For any $n \geq 0$ define $R_n \subseteq \Omega_X \times \Omega_X$ and $S_n \subseteq \Omega_X \times \Omega_X$ by: $R_0 := R$ and $S_n = R^{-1} \circ R_n$ and $R_{n+1} := R \circ S_n$. Let
 2402 $r_n : R_n \longrightarrow \Omega_X$ and $r'_n : R_n \longrightarrow \Omega_Y$ be the first and second projections and similarly for $s_n : S_n \longrightarrow \Omega_X$ and
 2403 $s'_n : S_n \longrightarrow \Omega_X$. Alternatively, we can formulate this in diagrammatic terms, taking pullbacks for both top-left squares
 2404 below,
 2405

$$\begin{array}{ccc} U_n & \xrightarrow{u'_n} & R & \xrightarrow{r} & \Omega_X \\ u_n \downarrow & \lrcorner & \downarrow r' & \vdots p & \downarrow \\ R_n & \xrightarrow{r'_n} & \Omega_Y & \dashrightarrow & \Omega_Z \\ r_n \downarrow & \vdots q & \downarrow \text{id}_{\Omega_Z} & \vdots s_n & \downarrow \text{id}_{\Omega_Z} \\ \Omega_X & \dashrightarrow & \Omega_Z & \xrightarrow{\text{id}_{\Omega_Z}} & \Omega_Z \end{array} \quad \begin{array}{ccc} T_{n+1} & \xrightarrow{t'_{n+1}} & R & \xrightarrow{r'} & \Omega_Y \\ t_{n+1} \downarrow & \lrcorner & \downarrow r & \vdots p & \downarrow \\ S_n & \xrightarrow{s'_n} & \Omega_X & \dashrightarrow & \Omega_Z \\ \Omega_X & \dashrightarrow & \Omega_Z & \xrightarrow{\text{id}_{\Omega_Z}} & \Omega_Z \end{array}$$

2415 and defining the relations $(s_n, s'_n) : S_n \longrightarrow \Omega_X \times \Omega_X$ and $(r_{n+1}, r'_{n+1}) : R_n \longrightarrow \Omega_X \times \Omega_X$ as the following epi-mono
 2416 factorisations in \mathbf{Set}

$$\begin{array}{ccc} U_n & \xrightarrow{u_n^S} & S_n & \xrightarrow{(s_n, s'_n)} & \Omega_X \times \Omega_X = U_n & \xrightarrow{(r_n \circ u_n, r \circ u'_n)} & \Omega_X \times \Omega_X \\ T_{n+1} & \xrightarrow{t_{n+1}^R} & R_n & \xrightarrow{(r_{n+1}, r'_{n+1})} & \Omega_X \times \Omega_Y = T_{n+1} & \xrightarrow{(s_n \circ t_{n+1}, r' \circ t'_{n+1})} & \Omega_X \times \Omega_Y \end{array}$$

2421 We first claim that, for any $n \geq 0$, both diagrams below commute.

$$\begin{array}{ccc} S_n & \xrightarrow{s_n} & \Omega_X \\ s'_n \downarrow & & \downarrow p \\ \Omega_X & \xrightarrow{p} & \Omega_Z \end{array} \quad \begin{array}{ccc} R_n & \xrightarrow{r_n} & \Omega_X \\ r'_n \downarrow & & \downarrow p \\ \Omega_Y & \xrightarrow{q} & \Omega_Z \end{array} \quad (43)$$

2428 This first claim is proved by a straightforward induction on n . For example, one can use the induction hypothesis to
 2429 complete the diagrams involving U_n and T_{n+1} above with the dotted arrows.
 2430

2431 Our second claim is that, for some $n \geq 0$, the right-hand square of (43) is a pullback in \mathbf{Set} . (The same holds for
 2432 the left-hand square, but we shall not need this.) This holds because the fibres of the pushout maps p and q from (42)
 2433 are the connected components in the bipartite graph $R \subseteq \Omega_X \times \Omega_Y$ restricted to Ω_X and Ω_Y respectively, and the R_n
 2434 construction approximates the path relation from below, necessarily reaching a fixed point at some finite n .
 2435

2436 Our third claim is that every atomic sheaf $\underline{P} \in \mathbf{Sh}_{\text{at}}(\mathbb{S}\text{ur})$ maps the pushout diagram (42) to a pullback in \mathbf{Set} . For
 2437 this, let $x \in \underline{P}(\Omega_X)$ and $y \in \underline{P}(\Omega_Y)$ be such that $x \cdot r = y \cdot r'$. We prove, by induction on n that $x \cdot r_n = y \cdot r'_n$ and
 2438 $x \cdot s_n = x \cdot s'_n$ for all n . For $n = 0$, we have $r_0 = r$ and $r'_0 = r'$ so indeed $x \cdot r_0 = y \cdot r'_0$. Next, assuming $x \cdot r_n = y \cdot r'_n$,
 2439 we show $x \cdot s_n = x \cdot s'_n$. For this, we have $x \cdot s_n \cdot u_n^S = x \cdot r_n \cdot u_n = y \cdot r'_n \cdot u_n = y \cdot r' \cdot u'_n = x \cdot r \cdot u'_n = x \cdot s'_n \cdot u_n^S$;
 2440 whence by separatedness $x \cdot s_n = x \cdot s'_n$. Similarly, assuming $x \cdot s_n = x \cdot s'_n$, we show $x \cdot r_{n+1} = y \cdot r'_{n+1}$. For this, we
 2441 have $x \cdot r_{n+1} \cdot t_{n+1}^R = x \cdot s_n \cdot t_{n+1} = x \cdot s'_n \cdot t_{n+1} = x \cdot r \cdot t'_{n+1} = y \cdot r' \cdot t'_{n+1} = y \cdot r'_{n+1} \cdot t_{n+1}^R$; whence by separatedness
 2442

2445 $x \cdot r_{n+1} = y \cdot r'_{n+1}$. This completes the argument by induction. The second claim above now gives us n such that the
2446 right-hand square of (43) is a pullback, in **Set**, hence an independent square in $\mathbb{S}\text{ur}$. By Theorem 6.6, the square is
2447 mapped by \underline{P} to a pullback in **Set**. By the statement proved by induction, $x \cdot r_n = y \cdot r'_n$. So, by the pullback property in
2448 **Set**, there exists a unique $z \in \underline{P}(\Omega_Z)$ such that $z \circ p = x$ and $z \circ q = y$, which is what we needed to show to establish
2449 the third claim.

2450 2451 We now establish the property asserted by the theorem. Consider any pushout diagram in $\mathbb{S}\text{ur}$.

$$\begin{array}{ccc} \Omega_V & \xrightarrow{s} & \Omega_X \\ t \downarrow & & \downarrow p \\ \Omega_Y & \xrightarrow{q} & \Omega_Z \end{array}$$

2452 Define $R \subseteq \Omega_X \times \Omega_Y$ to be the image $(s, t)(\Omega_V)$. Since s, t are surjective, R is bitotal. By the observations at the start of
2453 this section, (42) is also a pushout. By the third claim above, \underline{P} maps (42) to a pullback in **Set**. This property transfers to
2454 the original pushout, by Lemma A.2. \square

2455 2456 2457 2458 PROOF OF THEOREM 7.7. Given a sheaf $\underline{P} \in \text{Sh}_{\text{at}}(\mathbb{S}\text{ur})$ and element $x \in \underline{P}(\Omega_X)$, the support is obtained by taking
2459 a joint pushout in $\mathbb{S}\text{ur}$ of all (inequivalent) representable factorisations of x , of which there are only finitely many
2460 (because there are only finitely many partitions of Ω_X). By Theorem A.1, this joint pushout is itself a representable
2461 factorisation of x . \square

B Validity of axioms (28) and (29) from Figure 4

The lemma below establishes the validity of axiom (28).

2479 LEMMA B.1. Suppose $(x, (y, z), w) \in \perp\!\!\!\perp_{\underline{A}, \underline{B} \times \underline{C} \mid \underline{D}}(X)$ then $(x, y, (z, w)) \in \perp\!\!\!\perp_{\underline{A}, \underline{B} \mid \underline{C} \times \underline{D}}(X)$.

2482 PROOF. If $(x, (y, z), w) \in \perp\!\!\!\perp_{\underline{A}, \underline{B} \times \underline{C} \mid \underline{D}}(X)$ then we have a hybrid diagram

$$\begin{array}{ccccc} X & \xrightarrow{p} & X_{xw} & \xrightarrow{(x', u')} & \underline{A} \times \underline{D} \\ q \downarrow & \perp\!\!\!\perp & \downarrow r & & \downarrow \pi_2 \\ X_{yzw} & \xrightarrow{s} & X_w & & \\ (y', z', v') \downarrow & & \searrow w' & & \\ B \times \underline{C} \times \underline{D} & \xrightarrow{\pi_2} & \underline{D} & & \end{array}$$

2493 where $x' \cdot p = s$ and $y' \cdot q = y$ and $z' \cdot q = z$ and $(X_w, r \circ p, w')$ is support for w and, without loss of generality,
2494 $(X_{xw}, p, (x', u'))$ is support for (x, z) and $(X_{yzw}, q, (y', z', v'))$ is support for (y, z, w) .

2497 The independent square in the diagram above can be factorised as a composite of two commuting squares as in the
 2498 top row below
 2499

$$\begin{array}{ccccc}
 2500 & X & \xrightarrow{p'} & X_{xzw} & \xrightarrow{p''} X_{xw} \\
 2501 & q \downarrow & & t \downarrow & \downarrow r \\
 2502 & X_{yzw} & \xrightarrow{s'} & X_{zw} & \xrightarrow{s''} X_w \\
 2503 & s' \downarrow & & id \downarrow & \downarrow id \\
 2504 & X_{zw} & \xrightarrow{id} & X_{zw} & \xrightarrow{s''} X_w \\
 2505 & & & & \\
 2506 & & & & \\
 2507 & & & &
 \end{array} \tag{44}$$

2508 where all objects are defined as the supports indicated by their names. For example, $(X_{zw}, s' \circ q, (z'', w''))$ is support
 2509 for (z, w) and $(X_{xzw}, p', (x' \cdot p'', z'' \cdot t, u' \cdot p''))$ is support for (x, z, w) . We show that the top-right square is an
 2510 independent pullback.
 2511

2512 To see it is independent, observe that the full composite square (44) above is a composite of an independent top-row
 2513 rectangle with the two independent squares in the bottom row. So (44) is independent. That is, the square
 2514

$$\begin{array}{ccc}
 2515 & X & \xrightarrow{p'' \circ p'} X_{xw} \\
 2516 & \downarrow top' & \downarrow r \\
 2517 & X_{zw} & \xrightarrow{s''} X_w \\
 2518 & & \\
 2519 & &
 \end{array}$$

2520 is independent. It thus follows from the descent property that the top-right square in (44) is independent.
 2521

2522 For the independent pullback property, consider any independent pullback of r along s''

$$\begin{array}{ccc}
 2523 & Y & \xrightarrow{h} X_{xw} \\
 2524 & \downarrow k & \downarrow r \\
 2525 & X_{zw} & \xrightarrow{s''} X_w \\
 2526 & & \\
 2527 & &
 \end{array}$$

2528 Since the top-right square of (44) is independent, there exists $j : X_{xzw} \rightarrow Y$ such that $k \circ j = t$ and $j \circ h = p''$. This gives
 2529 us a representable factorisation $(Y, j \circ p', (x' \cdot h, z'' \cdot k, u' \cdot h))$ of (x, z, w) . Since $(X_{xzw}, p', (x' \cdot p'', z'' \cdot t, u' \cdot p''))$
 2530 is support for (x, z, w) , we obtain a map $i : Y \rightarrow X_{xzw}$ of representable factorisations. However j is also a map of
 2531 representable factorisations in the opposite direction, so i and j are mutual inverses. Thus the top-right square in (44) is
 2532 indeed an independent pullback.
 2533

2534 Since the top-row rectangle of (44) is independent and the top-right square an independent pullback it follows that
 2535 the top-left square is independent. Using this, we form the hybrid diagram
 2536

$$\begin{array}{ccccc}
 2537 & X & \xrightarrow{p'} X_{xzw} & \xrightarrow{(x' \cdot p'', z'' \cdot t, u' \cdot p'')} \underline{A} \times \underline{C} \times \underline{D} \\
 2538 & q \downarrow & \perp \downarrow & t \downarrow & \downarrow \pi_{2,3} \\
 2539 & X_{yzw} & \xrightarrow{s'} X_{zw} & & \\
 2540 & (y', z', o') \downarrow & & & \\
 2541 & \underline{B} \times \underline{C} \times \underline{D} & \xrightarrow{\pi_{2,3}} & \underline{D} &
 \end{array}$$

2542 showing that indeed $(x, y, (z, w)) \in \perp_{\underline{A}, \underline{B} \mid \underline{C} \times \underline{D}}(X)$. □
 2543

2549 The lemma below establishes the validity of axiom (29).
 2550
 2551
 2552
 2553
 2554

2555 LEMMA B.2. Suppose $(x, y, (z, w)) \in \perp\!\!\!\perp_{\underline{A}, \underline{B} \mid \underline{C} \times \underline{D}}(X)$ and $(x, z, w) \in \perp\!\!\!\perp_{\underline{A}, \underline{C} \mid \underline{D}}(X)$ then $(x, (y, z), w) \in \perp\!\!\!\perp_{\underline{A}, \underline{B} \times \underline{C} \mid \underline{D}}(X)$.
 2556
 2557
 2558
 2559
 2560

2561 PROOF. The assumption $(x, y, (z, w)) \in \perp\!\!\!\perp_{\underline{A}, \underline{B} \mid \underline{C} \times \underline{D}}(X)$ gives us:
 2562

$$\begin{array}{ccccc}
 X & \xrightarrow{p} & X_{xz_w} & \xrightarrow{(x', u'_z, u'_w)} & \underline{A} \times \underline{C} \times \underline{D} \\
 q \downarrow & \perp\!\!\!\perp & \downarrow r & & \downarrow \pi_{2,3} \\
 X_{yz_w} & \xrightarrow{s} & X_{z_w} & & \\
 (y', v'_z, v'_w) \downarrow & & \searrow (z', w') & & \\
 B \times \underline{C} \times \underline{D} & \xrightarrow{\pi_{2,3}} & \underline{C} \times \underline{D} & &
 \end{array} \tag{45}$$

2563 where $x' \cdot p = x$ and $y' \cdot q = y$ and $(X_{z_w}, r \circ p, (z', w'))$ is support for (z, w) and, without loss of generality,
 2564 $(X_{xz_w}, p, (x', u'_z, u'_w))$ is support for (x, z, w) and $(X_{yz_w}, q, (y', v'_z, v'_w))$ is support for (y, z, w) .
 2565

2566 Similarly, the assumption $(x, z, w) \in \perp\!\!\!\perp_{\underline{A}, \underline{C} \mid \underline{D}}(X)$ gives us:
 2567

$$\begin{array}{ccccc}
 X & \xrightarrow{p'} & X_{xw} & \xrightarrow{(x'', u''_w)} & \underline{A} \times \underline{D} \\
 r \circ p \downarrow & \perp\!\!\!\perp & \downarrow r' & & \downarrow \pi_2 \\
 X_{zw} & \xrightarrow{s'} & X_w & & \\
 (z', w') \downarrow & & \searrow w'' & & \\
 \underline{C} \times \underline{D} & \xrightarrow{\pi_2} & D & &
 \end{array} \tag{46}$$

2568 where $x'' \cdot p' = x$ and $z'' \cdot q' = z$ and $(X_w, r' \circ p', w'')$ is support for w and, without loss of generality, $(X_{xw}, p', (x'', u''_w))$
 2569 is support for (x, w) and we can use $r \circ p$ because $(X_{zw}, r \circ p, (z', w'))$ is support for (z, w) .
 2570

2571 Exploiting the support property of X_{xw} , we obtain p'' in
 2572

$$\begin{array}{ccccc}
 X & \xrightarrow{p} & X_{xz_w} & \xrightarrow{p''} & X_{xw} \\
 q \downarrow & & \downarrow r & & \downarrow r' \\
 X_{yz_w} & \xrightarrow{s} & X_{z_w} & \xrightarrow{s'} & X_w
 \end{array}$$

2573 such that $p'' \circ p = p'$. The left-hand square above is the independent square from (45). Since $p'' \circ p = p'$, the right-hand
 2574 square is also independent, by descent along p from the independent square in (46). So the composite rectangle is
 2575 independent.
 2576

2601 The composite rectangle provides the independent square in

$$\begin{array}{ccccc}
 & X & \xrightarrow{p'} & X_{xw} & \xrightarrow{(x'', u'_{w'})} \underline{A} \times \underline{D} \\
 q \downarrow & \perp & & \downarrow r' & \\
 X_{yzw} & \xrightarrow{s'_{os}} & X_w & & \downarrow \pi_2 \\
 (y', v'_z, v'_w) \downarrow & & \searrow w'' & & \\
 \underline{B} \times \underline{C} \times \underline{D} & \xrightarrow{\pi_3} & \underline{D} & &
 \end{array}$$

2612 showing that $(x, (y, z), w) \in \perp_{\underline{A}, \underline{B} \times \underline{C} \mid \underline{D}}(X)$ as required. \square

C Proof of Proposition 8.12

2615 The goal of the section is to prove Proposition 8.12, which states that Definition 8.11 endows $\mathbb{S}\mathbb{B}\mathbb{P}_0$ with independent
2616 pullback structure satisfying the descent property.

2618 Recall that Definition 8.11 defines a commuting square (37) in $\mathbb{S}\mathbb{B}\mathbb{P}_0$ to be *independent* if $p \perp\!\!\!\perp q \mid r \circ p$ according
2619 to Definition 8.7. Since the square is commuting, the property in Definition 8.7 simplifies to: for every $S \in \mathcal{B}_{\Omega_Y}$ and
2620 $T \in \mathcal{B}_{\Omega_Z}$, and for P_{Ω_W} -almost all $\omega \in \Omega_W$,

$$P_{(r \circ p)^{-1}(\omega)}(p^{-1}(S) \cap q^{-1}(T)) = P_{r^{-1}(\omega)}(S) \cdot P_{s^{-1}(\omega)}(T) . \quad (47)$$

2624 The key proposition below characterises the independence of (37) as being equivalent to p , considered as a map on
2625 fibre sets $q^{-1}(\omega_Z) \rightarrow r^{-1}(s(\omega_Z))$, preserving the disintegration-induced probability measures, for almost all ω_Z .

2627 **PROPOSITION C.1.** *A commuting square in $\mathbb{S}\mathbb{B}\mathbb{P}_0$ (37) is independent if and only if, for P_{Ω_Z} -almost-all $\omega_Z \in \Omega_Z$, it
2628 holds that $p_*(P_{q^{-1}(\omega_Z)}) = P_{r^{-1}(s(\omega_Z))}$.*

2630 **PROOF.** We first prove the right-to-left implication. Accordingly, suppose $p_*(P_{q^{-1}(\omega_Z)}) = P_{r^{-1}(s(\omega_Z))}$ holds for
2631 P_{Ω_Z} -almost-all $\omega_Z \in \Omega_Z$. For P_{Ω_W} -almost every $\omega \in \Omega_W$, we prove (47) by

$$\begin{aligned}
 & P_{(r \circ p)^{-1}(\omega)}(p^{-1}(S) \cap q^{-1}(T)) \\
 &= \int P_{q^{-1}(\omega_Z)}(p^{-1}(S) \cap q^{-1}(T)) \, dP_{s^{-1}(\omega)}(\omega_Z) \\
 &= \int \mathbb{1}_T(\omega_Z) \cdot P_{q^{-1}(\omega_Z)}(p^{-1}(S)) \, dP_{s^{-1}(\omega)}(\omega_Z) \\
 &= \int \mathbb{1}_T(\omega_Z) \cdot P_{r^{-1}(s(\omega_Z))}(S) \, dP_{s^{-1}(\omega)}(\omega_Z) && \text{because } p_*(P_{q^{-1}(\omega_Z)}) = P_{r^{-1}(s(\omega_Z))} \\
 &= \int \mathbb{1}_T(\omega_Z) \cdot P_{r^{-1}(\omega)}(S) \, dP_{s^{-1}(\omega)}(\omega_Z) \\
 &= P_{r^{-1}(\omega)}(S) \cdot \int \mathbb{1}_T(\omega_Z) \, dP_{s^{-1}(\omega)}(\omega_Z) \\
 &= P_{r^{-1}(\omega)}(S) \cdot P_{s^{-1}(\omega)}(T) .
 \end{aligned}$$

2648 For the left-to-right implication, suppose (47) holds, for P_{Ω_W} -almost every $\omega \in \Omega_W$. Note that, for any $S \in \mathcal{B}_{\Omega_Y}$ the
2649 function

$$T \mapsto \int \mathbb{1}_T(\omega_Z) \cdot P_{q^{-1}(\omega_Z)}(p^{-1}(S)) \, dP_{\Omega_Z}(\omega_Z)$$

2653 is a measure $\mathcal{B}_{\Omega_Z} \rightarrow [0, 1]$ with density

$$2654 \quad \omega_Z \mapsto P_{q^{-1}(\omega_Z)}(p^{-1}(S)) .$$

2655 Similarly, the function

$$2656 \quad T \mapsto \int \mathbb{1}_T(\omega_Z) \cdot P_{r^{-1}(s(\omega_Z))}(S) dP_{\Omega_Z}(\omega_Z)$$

2657 is a measure with density

$$2658 \quad \omega_Z \mapsto P_{r^{-1}(s(\omega_Z))}(S) .$$

2659 Below we prove

$$2660 \quad \int \mathbb{1}_T(\omega_Z) \cdot P_{q^{-1}(\omega_Z)}(p^{-1}(S)) dP_{\Omega_Z}(\omega_Z) = \int \mathbb{1}_T(\omega_Z) \cdot P_{r^{-1}(s(\omega_Z))}(S) dP_{\Omega_Z}(\omega_Z) , \quad (48)$$

2661 which establishes that the two measures are equal, and hence their densities are almost surely equal. That is, for P_{Ω_Z} -
2662 almost-all $\omega_Z \in \Omega_Z$, we have $P_{q^{-1}(\omega_Z)}(p^{-1}(S)) = P_{r^{-1}(s(\omega_Z))}(S)$, for all $S \in \mathcal{B}_{\Omega_Y}$. That is, $p_*(P_{q^{-1}(\omega_Z)}) = P_{r^{-1}(s(\omega_Z))}$,
2663 as required.

2664 It remains to prove (48). For this, we calculate

$$\begin{aligned} 2665 \quad & \int \mathbb{1}_T(\omega_Z) \cdot P_{r^{-1}(s(\omega_Z))}(S) dP_{\Omega_Z}(\omega_Z) \\ 2666 \quad &= \int \int \mathbb{1}_T(\omega_Z) \cdot P_{r^{-1}(s(\omega_Z))}(S) dP_{s^{-1}(\omega)}(\omega_Z) dP_{\Omega}(\omega) \\ 2667 \quad &= \int \int \mathbb{1}_T(\omega_Z) \cdot P_{r^{-1}(\omega)}(S) dP_{s^{-1}(\omega)}(\omega_Z) dP_{\Omega}(\omega) \\ 2668 \quad &= \int P_{r^{-1}(\omega)}(S) \cdot \left(\int \mathbb{1}_T(\omega_Z) dP_{s^{-1}(\omega)}(\omega_Z) \right) dP_{\Omega}(\omega) \\ 2669 \quad &= \int P_{r^{-1}(\omega)}(S) \cdot P_{s^{-1}(\omega)}(T) dP_{\Omega}(\omega) \\ 2670 \quad &= \int P_{(s \circ q)^{-1}(\omega)}(p^{-1}(S) \cap q^{-1}(T)) dP_{\Omega}(\omega) \quad \text{by (47)} \\ 2671 \quad &= \int \int P_{q^{-1}(\omega_Z)}(p^{-1}(S) \cap q^{-1}(T)) dP_{s^{-1}(\omega)}(\omega_Z) dP_{\Omega}(\omega) \\ 2672 \quad &= \int \int \mathbb{1}_T(\omega_Z) \cdot P_{q^{-1}(\omega_Z)}(p^{-1}(S)) dP_{s^{-1}(\omega)}(\omega_Z) dP_{\Omega}(\omega) \\ 2673 \quad &= \int \mathbb{1}_T(\omega_Z) \cdot P_{q^{-1}(\omega_Z)}(p^{-1}(S)) dP_{\Omega_Z}(\omega_Z) . \end{aligned}$$

2674 For any fixed $S \in \mathcal{B}_{\Omega_Y}$ the function mapping any T to the left-hand side of (48) is clearly a measure $\mathcal{B}_{\Omega_Z} \rightarrow [0, 1]$. \square

2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704 We now verify that independent squares in $\mathbb{S}\mathbb{B}\mathbb{P}_0$ indeed satisfy the axioms for independent pullback structure.
Axioms (IP1) and (IP2) are straightforward. Axiom (IP3) is an easy consequence of Proposition C.1. For Axiom (IP5),
it is not difficult to verify that (38) indeed constructs an independent pullback square. The descent property is also
straightforward. This leaves us with (IP4), which is established in greater generality by the proposition below.

PROPOSITION C.2. *In a commuting diagram in $\mathbb{S}\mathbb{B}\mathbb{P}_0$ as below, if both the composite rectangle (AB) and right-hand square (B) are independent and $[q], [t]$ are also jointly monic, then the left-hand square (A) is independent.*

$$\begin{array}{ccccc}
 \Omega_X & \xrightarrow{[s]} & \Omega_Y & \xrightarrow{[t]} & \Omega_Z \\
 [p] \downarrow & (A) & \downarrow [q] (B) & & \downarrow [r] \\
 \Omega_U & \xrightarrow{[u]} & \Omega_V & \xrightarrow{[v]} & \Omega_W
 \end{array}$$

PROOF. We use Proposition C.1 to prove that (A) is independent. That is, we show that, for P_{Ω_U} -almost-all $\omega_U \in \Omega_U$, and for all $C \in \mathcal{B}_{\Omega_Y}$,

$$P_{p^{-1}(\omega_U)}(s^{-1}(C)) = P_{q^{-1}(u(\omega_U))}(C) . \quad (49)$$

We show this first for C of the form $t^{-1}(A) \cap q^{-1}(B)$, where $A \in \mathcal{B}_{\Omega_Z}$ and $B \in \mathcal{B}_{\Omega_V}$. In this case, we have

$$\begin{aligned}
 P_{p^{-1}(\omega_U)}(s^{-1}t^{-1}(A) \cap s^{-1}q^{-1}(B)) &= P_{p^{-1}(\omega_U)}(s^{-1}t^{-1}(A) \cap p^{-1}u^{-1}(B)) \\
 &= \mathbb{1}_{u^{-1}(B)}(\omega_U) \cdot P_{p^{-1}(\omega_U)}(s^{-1}t^{-1}(A)) \\
 &= \mathbb{1}_B(u(\omega_U)) \cdot P_{p^{-1}(\omega_U)}(s^{-1}t^{-1}(A)) \\
 &= \mathbb{1}_B(u(\omega_U)) \cdot P_{r^{-1}(v(u(\omega_U)))}(A) && \text{by Proposition C.1 for (AB)} \\
 &= \mathbb{1}_B(u(\omega_U)) \cdot P_{q^{-1}(u(\omega_U))}(t^{-1}(A)) && \text{by Proposition C.1 for (B)} \\
 &= P_{q^{-1}(u(\omega_U))}(t^{-1}(A) \cap q^{-1}(B)) .
 \end{aligned}$$

The joint monicity of $[q]$ and $[t]$ means that the there is a measure 1 set $S \in \mathcal{B}_{\Omega_Y}$ such that the paired function $(t, q) : S \rightarrow \Omega_Z \times \Omega_V$ is injective. Since $S \subseteq \Omega_Y$ is Borel, the standard Borel structure on Ω_Y restricts to S , and (t, q) is a measurable embedding of the standard Borel space S into the product standard Borel space $\Omega_Z \times \Omega_V$. Thus every Borel subset of S is the restriction of a Borel subset of $\Omega_Z \times \Omega_V$. Since the σ -algebra of Borel subsets of $\Omega_Z \times \Omega_V$ is generated by Borel rectangles $A \times B$, it follows that the Borel subsets of S are generated by sets of the form $S \cap (t^{-1}(A) \cap q^{-1}(B))$. Moreover, such sets are closed under finite intersections.

The left-hand and right-hand sides of (49) define measures $C \mapsto P_{p^{-1}(\omega_U)}(s^{-1}(C))$ and $P_{q^{-1}(u(\omega_U))}(C)$ respectively. By the equality we have shown for C of the form $t^{-1}(A) \cap q^{-1}(B)$, these measures agree on a generating set for \mathcal{B}_{Ω_Y} (restricted to S) that is closed under finite intersections. The two measures are therefore equal. This proves (49). \square