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Equivalence and Conditional Independence in Atomic Sheaf Logic

ALEX SIMPSON", Faculty of Mathematics and Physics, University of Ljubljana

Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

We propose a semantic foundation for logics for reasoning in settings that possess a distinction between equality of variables, a coarser
equivalence of variables, and a notion of conditional independence between variables. We show that such relations can be modelled
naturally in atomic sheaf toposes. Equivalence of variables is modelled by an intrinsic relation of atomic equivalence that is possessed
by every atomic sheaf. We identify additional structure on the category generating the atomic topos (primarily, the existence of a
system of independent pullbacks) that allows the relation of conditional independence to be interpreted in the topos. We then study
the logic of equivalence and conditional independence that is induced by the internal logic of the topos. This atomic sheaf logic is a
classical logic that validates a number of fundamental reasoning principles relating equivalence and conditional independence. As
a concrete example of this abstract framework, we use the atomic topos over the category of surjections between finite nonempty
sets as our main running example. In this category, the interpretations of equivalence and conditional independence coincide with
those given by the multiteam semantics of independence logic, in which the role of equivalence is taken by the relation of mutual
inclusion. A major difference from independence logic is that, in atomic sheaf logic, the multiteam semantics of the equivalence and
conditional independence relations is embedded within a classical surrounding logic. At the end of the paper, we briefly outline two
other instances of our framework, to demonstrate its versatility. The first of these is a category of probability sheaves, in which atomic
equivalence is equality-in-distribution, and the conditional independence relation is the usual probabilistic one. Our other example is
the Schanuel topos (equivalent to nominal sets) where equivalence is orbit equality and conditional independence amounts to a relative

form of separatedness.
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1 Introduction

This paper provides a study of fundamental logical principles for reasoning about relations of independence and
conditional independence together with an associated relation of equivalence. The principles, which are obtained via the
abstract mathematical framework of sheaf theory, are general, in the sense that that they apply uniformly to different

“Research supported by John Templeton Foundation grant number 39465 (2013-14).

Skt This project has received funding from the European Union’s
o % Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 731143.

Author’s Contact Information: Alex Simpson, Alex.Simpson@fmf.uni-lj.si, Faculty of Mathematics and Physics, University of Ljubljana
Institute of Mathematics, Physics and Mechanics, Ljubljana , Ljubljana, Slovenia Jadranska 19.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1


HTTPS://ORCID.ORG/XXXX-XXXX-XXXX
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/XXXX-XXXX-XXXX

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

2 Alex Simpson

instantiations of the notions of (conditional) independence and equivalence in a number of very different application
areas. The paper focuses on the mathematical development of a general theory that is intended to be cross-disciplinary
in its applicability, but with computer science as a particularly prominent source of target application areas.

Notions of independence and conditional independence arise in many scientific areas. One particularly significant area
is in probability and statistics, where it has long been recognised that conditional independence relations are subject
to subtle rules of inference [7, 40]. Such rules, in a graphical formulation, are crucial in the technology of Bayesian
networks [15, 16, 33]. In a more logical form, they have received recent interest in the area of program verification,
where, for example, versions of separation logic based on probabilistic independence have been developed [2, 5, 27].

In a different direction, the dependence and independence logics of Vaananen and Grédel [17, 42] are concerned with
purely logical notions of dependence and independence between variables. Such logics are based on team semantics,
which develops Hodges’ compositional approach [20] to the semantics of independence-friendly logic [19] into a fully
fledged semantic framework. One of the attractions of team semantics is the close relationship it enjoys with database
theory and notions of dependence and independence that arise therein [18]. There is also an intriguing aspect to team
semantics: it gives rise to logics that are exotic in character. This point is discussed in more detail in Section 10.1.

The starting point of the present paper, in Sections 2 and 3, is the observation that the interpretation given by
team semantics, more precisely by its multiteam variant [11], to conditional independence statements is equivalent to
interpreting these relations in a certain sheaf topos, namely the topos of atomic sheaves on the category Sur of finite
nonempty sets and surjections. This means that the team semantics of conditional independence automatically has
a logic canonically associated with it: the internal logic of the topos. Since the topos is atomic, this internal logic is
ordinary classical logic, albeit with a nonstandard semantics. We thus obtain a classical logic suitable for reasoning
with conditional independence relations endowed with their (multi)team semantics (Section 4).

One advantage of the atomic sheaf perspective on conditional independence is that it is very general. We axiomatise
structure, on the generating category of the topos, that gives rise to a canonical interpretation of conditional indepen-
dence relations. For this, we define, in Section 6, the notion of independent pullback structure on a category, closely
related to the conditional independence structure of [38], but with a much more compact axiomatisation. We also expose
a surprisingly rich interplay between independent pullback structure and the induced atomic sheaves. Building on this,
in Section 7, we define atomic conditional independence, generalising the multiteam conditional-independence relation
to any atomic sheaf topos over a generating category with sufficient structure

Along the route to defining conditional independence, we observe, in Section 5, that every object of an atomic topos
carries, in addition to the standard equality relation on the object, an additional intrinsic equivalence relation, which
we call atomic equivalence. Logically, this provides us with a canonical equivalence relation between variables that is, in
general, coarser than equality. In the example of the atomic topos on the category Sur, atomic equivalence turns out to
coincide with a relation of interest in team semantics, namely the equiextension relation.

One important contribution of the paper is the identification of fundamental axioms for relations of equivalence and
conditional independence that are validated by the general interpretation of these relations in atomic toposes (over
generating categories with enough structure). These axioms include the usual quantifier-free axioms from the literature
(for example, axioms formalising the reasoning principles for conditional independence from [7, 40]), but also new
first-order axioms that fully exploit the use of atomic sheaf logic. In Sections 5 and 7, we identify five such principles:
the transfer principle, the invariance principle, the principle of independent equivalence, the independent existence principle

and the property of existence preservation.
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Equivalence and Conditional Independence in Atomic Sheaf Logic 3

Throughout Sections 3-7, the abstract definitions are illustrated in the case of atomic sheaves over the category Sur,
which is our main running example, chosen because of its connection to (multi)team semantics. In Sections 8 and 9
we present two other examples of our general structure, in order to give some indication of its versatility. Section 8
presents an atomic sheaf topos over a category of probability spaces. The resulting category of probability sheaves
(first introduced in [37]) includes sheaves of random variables, over which equality coincides with the probabilistic
relation of almost sure equality, atomic equivalence coincides with the relation of equality in distribution, and the
atomic conditional independence relation coincides with the usual probabilistic relation. Section 9 very briefly indicates
how the Schanuel topos (which is equivalent to the category of nominal sets [14, 35]) fits into our framework. In this
case, atomic equivalence is the relation of orbit equality, and conditional independence amounts to a relative form of
separatedness.

Finally, in Section 10, we discuss related and potential future work, including a detailed comparison with team and
multiteam semantics in Section 10.1, and a discussion of potential computer science applications in Section 10.2.

This paper is an expanded version of a conference paper [39], presented at the thirty-ninth annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), held in Tallinn, Estonia in July 2024. In comparison with the
conference paper, this journal version includes proofs of all main results, as well as an expanded discussion on sheaves
in Section 3 and also a substantially expanded presentation of our second main example, the category of probability
sheaves, which occupies Section 8. We further include three new appendices containing lengthy proofs that we prefer

not to incorporate into the main body of the paper, where they would interrupt the flow.

2 Multiteam semantics

Dependence logic [42] and independence logic [17] extend first-order logic with new logical primitives expressing notions
of dependence and independence between variables. These logics are based on the realisation that such new primitives
can be interpreted semantically, by replacing the usual assignments used to interpret variables in logical formulas with
teams (sets of assignments) or with multiteams (multisets of assignments). The relevant definitions are as follows, where

A is an arbitrary set.

e An A-valued assignment is a function V — A where YV is a (without loss of generality finite) set of variables.
e An A-valued team [20, 42] is a set of assignments with common variable set V.

e An A-valued multiteam [11] is a multiset of assignments with common variable set V.

Teams and multiteams give a canonical semantics to a variety of interesting new logical relations between variables,
such as those expressing dependence = (x,y), independence x Ly, conditional independence x L, y, inclusion x C vy,
equiextension x > y and exclusion x|y, to give a non-exhaustive list. We review this in detail, in the case of multiteams,
focusing on two of the above relations: conditional independence and equiextension.

A multiset of elements from a set A is a function m: A — N, which assigns to every element a € A a multiplicity f(a).
A multiset m is finite if its support (the set supp(m) := {a | m(a) > 0}) is finite. A multiset m: A — N can alternatively
be presented by a set Q together with a function M: Q — A satisfying, for all a € A, the fibre M~1(a) has cardinality
m(a). The elements of Q can be thought of as names for distinct element occurrences in the multiset (so each element
in A has as many names as its multiplicity). Note also that the function M has the support set supp(m) as its image.
Of course a multiset m: A — N has many different presentations by finite-fibre functions. However, given two such

representations M: Q — A and M’: Q' — A, there exists a bijection i: Q — Q' such that M = M’ o i. (The proof of
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4 Alex Simpson

this statement, although simple, requires the axiom of choice.) So multisets are in one-to-one correspondence with
isomorphism classes of presentations.

In the case of a finite multiset m: A — N, the domain set Q of a presentation M: Q — A is necessarily finite, and
all functions with finite domain present finite multisets. Thus there is a one-to-one correspondence between finite
multisets and isomorphism classes of finite-domain presentations. (Moreover, because the multisets are now finite, the
axiom of choice is no longer needed.)

Since a multiteam is a multiset of assignments with a common V. it can be presented by a finite-fibred function of
the form

M: Q- (VoA .

As in [11], we restrict attention to finite multiteams. Henceforth, by multiteam we mean a finite multiset of assignments
with common V. Such finite multiteams correspond to functions M, as above, for which the set Q is finite. Equivalently,

by transposition, a multiteam can be represented by a function of the form
M:V - (Q - A)

While this is just a simple set-theoretic reorganisation of the notion of multiteam, it provides an illuminating alternative
perspective on multiteam semantics, which we now elaborate.

One can think of a function X: Q — A as a nondeterministic variable valued in A. Here the terminology is motivated
by analogy with the notion of random variable from probability theory. In our setting, we view the set Q as a finite
sample set, a nondeterministic version of a sample space in probability theory. The sample set represents a realm of
possible nondeterministic choices. With this terminology, a multiteam presented as p: V — (Q — A) is simply an
assignment of A-valued nondeterministic variables (with shared sample set) to logic_al variables. (In this paper, we
restrict to finite sample sets. Nevertheless, the notion of nondeterministic variable obviously generalises to arbitrary
sample sets Q.)

We now use the above formulation of multiteams as assignments of nondeterministic variables to recast definitions
from multiteam semantics (as in [11]). Technically, this is simply a straightforward matter of translating the definitions
along the equivalence between the two formulations of multiteam. However, even if mathematically equivalent, our
formulation of multiteam encourages a different ‘local’ style of presentation, where the sample sets Q play a role similar
to that played by possible worlds in Kripke semantics and by forcing conditions in set theory.

Before addressing semantics, we introduce our syntax. For greater generality, we work with a multi-sorted logic.
This also has the advantage that the sorting constraints on logical primitives provide useful information about their
generality in scope. Accordingly, we assume a set Sort of basic syntactic sorts A, B, C, .. .. Variables x have explicit

sorts. We consider three forms of atomic formula.

o IfxA, yA have the same sort, then x* = yA is an atomic formula.

o If x’lAl, .. .,x/,}" and ylA‘, .. .,yé" are two lists of variables of the same length n > 0 with identical sort lists, then
A An A An
X1 Lo Xyt ~ Y Y (1)
is an atomic formula.
o If XM Am and yB! Bn and 2% €1 are three lists of variables (with m, n, 1 > 0) th
X1h. Xyt andyyt oy, and 2, ..,z are three lists of variables (with m, n, [ > en
A Am B Bn_C C
XX Ly Y |zl‘,...,zll 2)
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Equivalence and Conditional Independence in Atomic Sheaf Logic 5
is an atomic formula.

The first formula expresses equality, as in ordinary (multi-sorted) first-order logic. The remaining two are atomic
constructs borrowed from logics associated with team semantics.

The formula X ~ y represents what we call equivalence, which arises in the team-semantics literature as equiextension
X €y Ay C X, sometimes written with the notation X »< y. Our more neutral notation and terminology reflects the fact
that we will later consider other interpretations of the ~ relation. The use of vectors of variables on either side is needed
because equivalence is a relation that holds betwen the vectors X and y jointly, and does not reduce to a conjunction of
equivalences between components.

The formula X L y | Z represents conditional independence from the independence logic of [17], where it is written
X L3y. In our syntax, we take the conditioning variables out of the subscript position in order to give them more
prominence, adopting a notation that is familiar from probability theory. An important special case of conditional
independence is when the sequence Z is empty. In such cases, we write simply X L y for the resulting relation, which
expresses unconditional independence.

It is of course the atomic formulas X ~ y and X L y | Z that give us equivalence and conditional independence in the
title of this paper.

To define the semantics, we assume we have, for every sort A, an associated set [[A] In a multi-sorted setting, an

assignment for a finite set V of variables is an element

pe []l4].

xAeV
and a multiteam is a finite multiset of assignments. In the standard multiteam semantics, a formula <I>(X/1\1, . x',‘;‘”) (ie.,
all free variables are in {x?l, . xﬁ" }) is given a satisfaction relation
Fm @, ©)
where m is a multiteam of {x?‘, s x/,;\" }-assignments. If instead we adopt the reformulation of multisets described

above, a multiteam is given as a single assignment
pe 1_[ (@ - [A]) @)
xAeV

of nondeterministic variables to logic variables, and the satisfaction relation can then be rewritten as
@ ©)
It turns out to be helpful to make the sample set Q, that occurs implicitly within p, explicit in the notation, so we write
QI P D . 6)

We here switch to the ‘forcing’ notation I, since we shall view Q as a ‘possible world’ or ‘condition’ (capturing all the
nondeterminism that the multiteam uses) that determines the ‘local truth’ of ®. We stress that relations (3), (5) and (6)
all have exactly the same meaning. The only differences are in the formulation of multiset that is used, and whether or
not Q is explicit in the notation.

Figure 1 defines the forcing relation Q I, @ directly in terms of our reformulated multiteams, as in (4), for atomic

formulas @. In the clauses for equivalence and independence we use the notation p(x), where X is a vector of variables
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6 Alex Simpson

Qi xA:yA =3 p(xA) = p(yA) (equal functions Q — [A])
Q o X~y © B(;Z) >a B(?)
QR 1717 & p() L p(H) | o)

Fig. 1. Multiteam semantics of atomic formulas

A

AN .. xh" to represent the ([A;] X - - - X [An])-valued nondeterministic variable

X
PR = 0 (PO, p(™) : Q = [Al] X x [An]

We also write X >« Y and X 1 Y | Z for the semantic relation of equiextension and conditional independence between

nondeterministic variables, as defined below.

Definition 2.1 (Equiextension for nondeterministic variables). Two nondeterministic variables X: @ - Aand Y: Q —

A are equiextensive (notation X » Y) if they have equal images, i.e., X(Q) = Y(Q).

Definition 2.2 (Conditional independence for nondeterministic variables). Let X: Q - A, Y: Q > BandZ: Q - C
be nondeterministic variables. We say that X and Y are conditionally independent given Z (notation X 1 Y| Z) if, for all
a€AbeBcceC,

(Fw € Q. X(w)=aand Z(w)=c) and (Jw € Q. Y(w)=b and Z(w)=c)
implies 3w € Q. X(w)=a and Y(w)=b and Z(w)=c .

In the literature on (in)dependence logics, the semantic clauses for atomic formulas are extended with clauses giving
meaning to the logical connectives and quantifiers. A number of inequivalent ways of achieving this appear in the
literature [11, 17, 42]. All share the feature that the resulting logics are exotic. We shall discuss this in more detail in
Section 10.1.

In this paper, we consider a different approach to embedding the equivalence and conditional independence constructs,
with their multiteam semantics, in a full multi-sorted first-order logic. We observe that the multiteam semantics of the
atomic constructs lives naturally in a certain atomic sheaf topos. and then we make use of the standard internal logic of

the topos, which in the case of an atomic topos is classical logic.

3 Atomic sheaves

In this section, we define the notion of atomic sheaf topos, which is a special kind of Grothendieck topos. We restrict
attention to presenting the definitions and results we shall make use of, attempting to do so in such a way that they can
be understood from first principles given knowledge of core category theory. For further contextualisation, [29] is an
excellent source.

A presheaf on a small category C is a functor P: C°P — Set (note the contravariance). The presheaf category Psh(C)
is the functor category Set®” . Given a presheaf P, object Y of C, element y € PY and map f: X — Y in C, we write
y -p f for the element P(f)(y) € PX, or simply y - f when P is clear from the context.

Example 3.1 (Representable presheaves). For any object Z € C, the representable presheaf yZ := C(—, Z) is defined by

e For any object X € C, define yZ(X) := C(X, Z), i.e., the hom set.
Manuscript submitted to ACM
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Equivalence and Conditional Independence in Atomic Sheaf Logic 7

e Foranymap f: Y— XinCandg € (yZ)(X), defineg- f :=go f.

The object mapping Z +— yZ extends to a full and faithful functor y : C — Psh(C), the Yoneda functor [29].

Example 3.2 (Product presheaves). Let Py, ..., P, be presheaves on C. Define the product presheaf Py X - -- X P, in
Psh(C) by:

e For any object X € C, define
(Prx -+ X Pp)(X) = Pr(X) XX Pp(X) ,

i.e., the product of sets.
e Foranymap f: Y— X in Cand (x1,...,x,) € (P1 X+ X Pp)(X), define

(xt,..xp) - f = (Gerp fooosxnop, )

The above definition generalises to infinite products, and further to arbitrary category-theoretic limits and colimits, all
of which are defined on presheaves in a similar (pointwise) way, using the corresponding definitions in the category of
sets.

The next example is central to this paper.

Example 3.3. Let Sur be (a small category equivalent to) the category whose objects are non-empty finite sets
and whose morphisms are surjective functions. For any set A, we have a presheaf NV(A) in Psh(Sur) of A-valued

nondeterministic variables (in the sense of Section 2), defined as follows.

e For any object Q of Sur, define NV(A)(Q) to be the set of all functions Q@ — A.
e For any map p: Q' — Qin Sur, and X € NV(A)(Q) define X - p tobe X o p € NV(A)(Q).

Grothendieck introduced a very general notion of what it means for a presheaf P € Psh(C) to be a sheaf relative to
a Grothendieck topology on C. A Grothendieck topology J specifies, for every object X, a collection Jx of families
of maps with codomain X, in which each family of maps (¢;: i — X);esr € Jx is deemed to provide a covering
family (more briefly cover) for X. A presheaf P is a J -sheaf if, for every such cover, every matching family of elements
(yi € P(Yi))ier has a unique amalgamation x € P(X). The high-level idea is that the matching property, which says
that the y; elements agree with each other on overlapping parts of the cover, allows all the y; to be glued together
into a single amalgamation x, which is an element of P(X). We shall not give the general definitions underlying the
emphasised words because, for this paper, it is not necessary to understand the notion of sheaf in its full generality.
Nonetheless, there is a point about the general definition worth making. The intuition that is usually presented for
the general definition is that the matching condition for the family (y; € P(Y;));e; means that the different y; are
compatible with each other, and then the unique amalgamation ‘glues’ these compatible elements together to form
a single element x € P(X), which is possible because the object X is covered by the family (Y;);¢;. In this paper, we
are going to work only with sheaves for atomic Grothendick topologies, for which the usual general intuition for
sheaves outlined above is not very helpful. In the case of an atomic topology, covers are single maps c¢: ¥ — X,
matching families contain only one element y € P(Y) (it needs to match only with itself, which turns out to be a
nontrivial condition) and the amalgamation x € P(X) is obtained from y alone, so the usual ‘gluing’ intuition does not
apply. Instead, we shall use the terminology invariant element in place of matching family, and descendent in place of
amalgamation, since this seems more appropriate in the context of an atomic topology.
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8 Alex Simpson

We first introduce the atomic sheaf concept using the example of Sur, and then follow this with the generalisation
to an arbitrary small category C. In the case of Sur, an object Q can be thought of as representing a ‘world’ of currently
available nondeterministic choices, and a map ¢ : Q' — Q specifies an extension of the existing nondeterministic
choices in Q to accommodate the additional nondeterminism potentially available in Q. Nondeterministic variables
form a presheaf NV(A) simply because any nondeterministic variable X € NV(A)(Q) extends via c to a corresponding
Q’-based nondeterministic variable X - ¢ := X o ¢ € NV(A)(Q’). This latter nondeterministic variable is defined for all
nondeterministic choices in Q’, but only makes use of nondeterminism already available in Q; that is, (X - ¢)(w”) =
(X - ¢)(w”) for any o’,w” € Q' for which c(w’) = ¢(w””). Furthermore, every element Y € NV(A)(Q’), that only
makes use of nondeterminism in Q, arises as Y = X - ¢ for a unique X € NV(A)(Q). In other words, it has a unique
representation as a bona fide Q-based nondeterministic variable X. In order to formulate this technically, we say
that a nondeterministic variable Y € NV(A)(Q’) is c-invariant if Y(0”) = Y(w”’) for any «’, 0’ € Q’ for which
c(w”) = c(w”). The presheaf NV(A) then satisfies: every c-invariant Y € NV(A)(Q’) arises as X - ¢ for a unique
X € NV(A)(Q), which we call the c-descendent of Y. As we shall see below, the property we have just elucidated asserts
that the presheaf NV(A) is a sheaf for the atomic Grothendieck topology on the category Sur.

A similar story can be told for any small category C for which an object X € C can be thought of as a world of
current possibilities, and a map c: Y — X represents a way of extending the current world to another world Y with
additional possibilities. Given a presheaf P an element x € P(X) and map c: Y — X, the element x - ¢ € P(Y) represents
the extension of x to incorporate the new possibilities from Y. The extended element x - ¢ enjoys the property of
c-invariance (Definition 3.6 below), which formalises that x - ¢ does not depend on any of the possibilities in Y beyond
those already available in X. Moreover, for any y € P(Y) that is c-invariant, the definition of atomic sheaf (Definition 3.8
below) says that there must exist a unique x € P(X) that, via the equation y = x - ¢, makes explicit the true dependency
of y only on X.

The main intuition underpinning the above discussion can be summarised as follows. In the context of a category
C, for which we think of maps c: Y — X as extending the possibilities offered by state X to a more refined set of

possibilities offered by state Y,

o the presheaf property of P says that we can extend any element x € P(X), defined using the possibilities at X,
to a corresponding element x - ¢ € P(Y) that, although defined at Y, does not exploit the potential additional
generality of Y;

o and the atomic sheaf property says that, for any element y € P(Y), defined using the possibilities at Y in
such a way that y does not exploit the potential greater generality afforded by Y over X, there exists a unique

corresponding element x € P(X) that makes explicit the dependency of y only on possibilities offered by X.

Since we are interested only in atomic topologies, we can define the sheaf property (Definition 3.8 below) directly,
without needing to introduce the general notion of Grothendieck topology. However, we do need the atomic Grothendieck

topology to exist on the base category C, which happens if and only if the category C is coconfluent.

Definition 3.4 (Coconfluence). A category C is coconfluent! if for any cospan X L z & Y, there exists a span
x&Ewd Y such that fou=gou.

PROPOSITION 3.5. Sur is coconfluent.

In [23, A 2.1.11(h)] C is said to satisfy the right Ore condition.
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Equivalence and Conditional Independence in Atomic Sheaf Logic 9

Proor. Consider any cospan Qx L Qy & Qy in Sur, Define

Qw = {(x,y) € Ax X Qy | p(x) =q(y)} .

Then u := (x,y) — x and v := (x, y) > y define surjective functions Qi - Qx and Qy - Qy, hence they are maps
in Sur, for which indeed p o u = q o v. (More briefly, the pullback in Set is a commuting square in Sur, though not a
pullback in Sur.) O

Let P € Psh(C) be a presheaf.

Definition 3.6 (Invariant element). Given c: Y — X and y € P(Y) we say that y is c-invariant if, for any parallel pair
of mapsd,e: Z— Y suchthatcod=coe, itholdsthaty-d =y -e.

Definition 3.7 (Descendent). Given c: Y — X and y € P(Y) we say that x € P(X) is a c-descendent of y if y = x - c.
It is easily seen that if x is a c-descendent of y then y is c-invariant. The notion of sheaf imposes a converse.

Definition 3.8 (Atomic sheaf). A presheaf P € Psh(C) is an atomic sheaf if, for every map c: Y — X in C, every

c-invariant y € P(Y) has a unique c-descendent x € P(X).
We shall also have use for the following weakening of the notion of sheaf.

Definition 3.9 (Separated presheaf). A presheaf P € Psh(C) is an separated (with respect to the atomic topology) if,

for every map c: Y — X in C, every c-invariant y € P(Y) has at most one c-descendent x € P(X)

PROPOSITION 3.10. A presheaf P € Psh(C) is separated if and only if, for all x,y € P(X) and q: Z— X, it holds that
x-q=y-qimpliesx =y.

PRrooF. Suppose P is separated, and x, y and g are such that x - ¢ = y - g. It then holds that x - q is g-invariant, and x
and y are g-descendents of x - q. So, by separatedness, x = y.

The converse implication, showing that separatedness follows from the statement in the proposition, is easy. O

Propositions 3.11 and 3.12 below illustrate the notion of sheaf in the case of C = Sur.

PROPOSITION 3.11. For any set A the presheaf NV(A) in Psh(Sur) is an atomic sheaf.

Proor. Consider any map c: Q' — Q in Sur and c-invariant Y € NV(A)(Q’), i.e., function Y: Q' — A. Define
Q" ={(v,0") e Q' xQ" | c(0)) =c(0”)},

andu = (o', 0") > 0': Q" > @ and v := (0, 0”) > 0"’ : Q" — Q’. Clearly c ou = c 0 0. So, since Y is c-invariant,
You=Y-u=Y -v=Y oo Thatis, for any («’,w’’) € Q”, we have Y(w’) = Y(w'’); ie., for any w € Q, the function
Y is constant on ¢! (w). Define X € NV(A4)(Q), i.e, X: Q(A) by:

X(w) = Y(w') where o’ € ¢ Y (w) . (7)

Since c is surjective, this is a good definition by the constancy property remarked above. By definition, Y = X oc =X - c,

so X is a c-descendent of Y. It is the unique such, because, for any c-descendent X, the surjectivity of ¢ forces (7). O

PROPOSITION 3.12. For any finite set Q the representable presheaf'y(Q) in Psh(Sur) is an atomic sheaf.
Manuscript submitted to ACM
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10 Alex Simpson

We omit the proof, which is very similar to the previous. This last proposition asserts that the atomic topology on Sur
is subcanonical.

As a final set of examples, it is standard (and also easily verified) that if ﬁ ... Ii are sheaves then the product
presheaf Py X - - - X Py is also a sheaf, the product sheaf. (A similar fact applies more generally to arbitrary category-
theoretic limits of sheaves.) In this statement, we introduce a notational convention we shall often adopt. We shall
typically use underlined names for sheaves (as with NV(A)) in order to emphasise that they are sheaves not just
presheaves.

Assuming the small category C is coconfluent, we write Sh,t (C) for the full subcategory of atomic sheaves in Psh(C).
While the coconfluence condition was not actually used in the definition of atomic sheaf above, it nonetheless plays
a critical role. For the benefit of readers who know the relevant category theory, we reiterate that the coconfluence
condtion is equivalent to the collection of atomic covers in C forming a Grothendieck topology, which in turn means that
Shat(C) is a Grothendieck topos, and the inclusion functor Shyt(C) — Psh(C) has a left adjoint a : Psh(C) — Sh,¢(C),
the associated sheaf functor [29]. Composing with the Yoneda functor, we obtain a functor ay : C — Sh,(C). Because
we are working with atomic topologies, every map in C is a cover, i.e., it is mapped by ay to an epimorphism in Sh,¢(C).
It thus follows from the Yoneda lemma that a necessary condition for every representable presheaf to be a sheaf (i.e.,

for the atomic topology to be subcanonical) is that all maps in C are epimorphic.

4 Atomic sheaf logic

For the next two sections, let C be an arbitrary coconfluent small category. We present a fragment of the internal logic
of the topos Sh,t(C) of atomic sheaves, which we will extend later with equivalence and conditional independence
formulas. The fragment we consider is simply multi-sorted first-order logic. Let Sort be a collection of sorts. We assume
a collection of primitive relation symbols, where each relation symbol R has an arity given as a finite sequence of sorts

arity(R) € Sort*. As in Section 2, variables x have explicit sorts. The rules for forming atomic formulas are:

e ifarity(R) = A1... A, and x/l'\l, .. .,x/,;\" is a list of variables of the corresponding sorts, then R(x’?‘, e xﬁ”) isa
formula;

o if x, y” have the same sort then x = y* is a formula.
The grammar for formulas extends atomic formulas with the usual constructs of first-order logic.
® ==ROM, ... XA =y @ | PAD OV D— D] XD VKN .
We write FV(®) for the set of free variables of a formula ®.

Definition 4.1 (Semantic interpretation). A semantic interpretation in Shy(C) is given by a function mapping every
sort A to an atomic sheaf A (i.e., to an object of Sh,;(C)), and a function mapping every relation symbol R of arity
A1...Antoasubsheaf R C A1 X - X A1

Definition 4.2 (Subpresheaf/subsheaf). For P,Q € Psh(C), we say that Q is a subpresheaf of P (notation Q C P) if:

o for every object X € C, we have Q(X) € P(X), and
o for every map f: Y — X in C and element x € Q(X), it holds that x -g f = x -p f.

For sheaves P, Q with Q C P, we say Q is a subsheaf of P.

The following is standard, and also easily verified.
Manuscript submitted to ACM
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Equivalence and Conditional Independence in Atomic Sheaf Logic 11

PROPOSITION 4.3. Given a presheaf P € Psh(C) and a function Q mapping every object X € C to a subset of P(X), the
function Q determines a (necessarily unique) subpresheaf of P if and only if:

o forevery f: Y— X inC and x € Q(X), it holds that x -p f € Q(Y).
If the above holds and P is also a sheaf, then the uniquely determined subpresheaf Q is itself a sheaf if and only if
o foreveryf:Y— X inCandx € P(X), ifx-p f € Q(Y) thenx € Q(X).

(This characterisation is valid in the form above because we are considering only sheaves for the atomic topology.)

The three propositions below illustrate the notion of subsheaf. The first two observe that the relations of equiextension
and conditional independence of nondeterministic variables (Definitions 2.1 and 2.2) form subsheaves, a fact which
will enable us to extend atomic sheaf logic with equivalence and conditional-independence relations at the end of the
present section. Although the proofs are straightforward, we include them to help give readers who are not familiar

with sheaves some feeling for the subsheaf property.

PROPOSITION 4.4. The subsets
{(XY) | XoaY} C (NV(A) X NV(A))(2)
define a subsheaf 4 C NV(A) x NV(A) via Proposition 4.3.

Proor. For the subpresheaf property, suppose (X, Y) € (NV(A) X NV(A))(Q) are such that (X, Y) € »4 (Q);ie.,
we have equality of images X (Q) = Y(Q). Let g: Q" — Q be amap in Sur. We need to show that (X-q,Y-q) € >4 (Q).
But indeed

(X @)(Q") =X(q(Q) =X(Q) =Y(Q) =Y(q(Q)) = (Y - 9)(Q) ,
where the second and fourth equalities hold because g is surjective.

For the subsheaf property, suppose we have (X,Y) € (NV(A) x NV(A))(Q) and map q: Q" — Q in Sur such that
(X-q,Y-q) € by (Q). By the definition of equiextension, X (q(Q’)) = Y(q(Q’)). Because q is surjective, X (Q) = Y (Q).
That is, (X, Y) € sy (Q), as required by Proposition 4.3 to show the subsheaf property. O

PrOPOSITION 4.5. The subsets
{(X,Y,Z) | X1LY|Z} € (NV(A) x NV(B) x NV(C))(Q)

define a subsheaf I 5 gjc € NV(A) X NV(B) x NV(C) via Prop. 4.3.

ProoF. We leave the subpresheaf property to the reader and verify just the subsheaf property. Suppose we have
(X,Y,Z) € (NV(A) x NV(B) x NV(C))(Q) and map q: Q" — Q in Sur such that (X - ¢, Y- ¢, Z - q) € 14 g|c(Q');
ie,X-qLY-q|Z-q Weneedtoshow that (X,Y,Z) € L4 pc(Q);ie, X LY|Z

Suppose that there exists w1 € Q such that X(w1) = a and Z(w1) = ¢, and there exists wy € Q such that Y(wz) = b
and Z(w2) = c. Using the surjectivity of g, let @], w; € Q' be such that g(w]) = w1 and g(w3) = wz. Then (X-g)(w]) = a
and (Z - q)(®]) = c. Similarly (Y - g)(wj) = b and (Z - q)(w;) = c. Because X - ¢ LY - q| Z - g, there exists ' € Q'
such that (X - ¢)(0’) =aand (Y - q)(0’) =band (Z - q)(w’) = c. So w := q(w”) satisfies X(w) = a and Y(w) = b and
Z(w) = ¢, showing that indeed X 1L Y | Z. O

As further interesting examples of subsheaves, we show how subsheaves of the sheaf NV(A) can be defined by using
modalities to lift properties P C A to properties of A-valued nondeterministic variables.
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12 Alex Simpson

A An A An
Xll—B RO . oxp") © (B(xll),...,g(xn )) € R(X)
Xk N=yh o B(XA) ZB(yA)
X||-B—|<I> =3 XMB(D
X @AY © Xip @and X by, ¥
XpoVY © X Por Xk, ¥
XII—BCD—NI’ =3 XulﬁtboerkB‘If
X BP0 o V.3 Y > X Ix € AY). Y b, ) [rmy] @
X VM@ & VY. Vf:Y— X.Vx € A(Y). Y F(p-f) [xemx] P

Fig. 2. Semantics of atomic sheaf logic

PROPOSITION 4.6. For any set A and subset P C A, the definitions
OP(Q) ={X:Q > A|VYwe Q.X(w) € P}
OP(Q) ={X:Q— A| 3w e Q.X(w) € P}

define subsheaves OP and OP of NV(A) in Shat(Sur), by Proposition 4.3.

This time we omit the proof, since the modality subsheaves will not play any further role in the paper. We mention,
however, that the constructions in Proposition 4.6 can be used as the basis for an interesting modal extension of the
first-order atomic sheaf logic of Sh,t(Sur), in which the modalities mediate between the ordinary first-order logic of
variables valued in A and the sheaf logic of nondeterministic variables valued in NV(A).
Returning to the general semantic interpretation of atomic sheaf logic in Sh,t(C), the semantics of formulas is given
by a forcing relation
X - P [0S

where @ is a formula, X is an object of C and

pE l_[ A(X)

A A
xAe{x,...x," }

is what we call an X-assignment: it maps every variable x* in a set {xf“, e x/,;\"} 2 FV(®) to an element p(x*) € A(X),
where A is the sheaf interpreting the sort A of the variable. -

The definition of the forcing relation is presented in Fig. 2. In the quantifier clauses, we write write p - f for the
Y-assignment z® - p(zB) - f, where p is an X-assignment and f: Y — X is a map in C, N

The clauses for th_e propositional zonnectives in Fig. 2 look remarkably simple-minded. They are, nonetheless,
equivalent to the more involved clauses that appear in the sheaf semantics for logic in a sheaf topos [29]. The simplification
in formulation is possible because we are working in the special case of atomic sheaves. The clauses for the existential
and universal quantifier are also taken from sheaf semantics, and do not admit further simplification. Their non-local
nature (they involve a change of world along f: Y — X) is the key feature that will give atomic sheaf logic its character,
when we later include equivalence and conditional independence formulas.
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Equivalence and Conditional Independence in Atomic Sheaf Logic 13

The next results summarise fundamental properties of the forcing relation and the logic it induces. The first is very
basic, but we include it explicitly because the notion of locality it addresses, namely the dependency of semantics only
on assignments to the free variables appearing in a formula, has been a delicate issue in the context of (in)dependence

logics.

PROPOSITION 4.7 (LOCALITY). For any formula ®, object X of C and X -assignments p, p’ that are defined and coincide
on FV(®).
Xkp @ if and only if X Fpr .

PROPOSITION 4.8 (SHEAF PROPERTY). For any formula ®, map f: Y — X in C, and X-assignment p defined on FV(®).

Xkp ® if and only if Y Fp.f . (8)

Proposition 4.8 is called the sheaf property because it is equivalent to the statement that, for every formula ® with
FV(®) C {x}",...,x,"}, it holds that

{(x1,xn) [ XAy P C (A X X Ap)(X) O]

defines a subsheaf of A; X ...Xx A, via Proposition 4.3.

Propositions 4.7 and 4.8 are both proved by induction on the structure of the formula. We omit the proof of
Proposition 4.7, which is straightforward. Proposition 4.8 asserts that the monotonicity and local character properties
from [29, §V1.7] hold. In loc. cit., these properties are shown to hold for arbitrary Grothendiek topologies, whereas
Proposition 4.8 concerns just the special case of atomic topologies. Nevertheless, we give a direct proof of Proposition 4.8,
both for the benefit of readers who do not know general sheaf theory, and also to demonstrate the crucial role played

by the coconfluence property of C.

PRrROOF OF PrOPOSITION 4.8. By induction on the structure of ®.

In the case that ® is an atomic formula of the form R(xll\l, s x/,'l\"), property (8) holds because R is a subsheaf of
AL X+ XAl

If @ is an equality x* = y*, then the left-to-right implication of (8) is immediate. For the right-to-left implication,
suppose Y I, . f xA = yA; that is, /_)(XA) -f= B(yA) - f. Since A is a sheaf, hence separated, we have ;_)(xA) = B(yA), by
Proposition 3.10. That is, X I-p xA = yA, as required.

The cases for the propositi(;nal connectives are all easy. We note only that, for the cases of negation and implication,
in which there are negated clauses in the definition of the forcing relation (Fig. 2), the induction hypothesis is used in
the opposite direction of (8) to the implication being proved.

In the case that @ is an existentially quantified formula 3x*.®’, we prove the left-to-right implication of (8).
Accordingly, suppose that X I, 3xA. @', By the forcing clause for the existential quantifier, there exist g : Z— X and

x € A(Z) such that Z F(p-g)[xP=x] @’. By coconfluence, there exists a span Y <f— w 25 Z such that gog =fof.

By the induction hypothesis, W I (p-g-9) [ i=x-g'] ' ie, W II—(B S [P=xeg' ] ®’. Whence, by the forcing clause for
the existential quantifier, Y Ik, ¢ 3IxA. @', as required. We leave the easier right-to-left implication of (8), which does
not involve coconfluence, to the reader.

The proof for the universal quantifier is similar. (It can also be bypassed, by noting that the forcing interpretation of
3IxA. @’ is equivalent to that for —3x*. ~@’.) O
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14 Alex Simpson

It is standard that sheaf semantics, for an arbitrary Grothendieck topology, always validates intuitionistic logic. In
the special case of an atomic topology, the law of excluded middle ® vV —® is also validated, hence atomic sheaf logic is
classical. In more detail, atomic topologies are special cases of dense Grothendieck topologies, and categories of sheaves
for the latter are always boolean, hence classical logic is validated. This whole picture is explained in [29]. We shall not,
however, assume familiarity with this abstract picture. Accordingly, we give a brief, direct explanation of how atomic
sheaf logic validates classical logic.

A formula @ is said to be true (in Shat(C)) under all assignments if, for every object X of C and X-assignments p
defined on FV(®),it holds that X I, ®. B

THEOREM 4.9 (CLASSICAL LOGIC). If® is a theorem of (multisorted) classical logic then it is true in Shyt (C) under all

assignments.

ProOF (OUTLINE). It follows trivially from the definition of the forcing relation Fig. 2 that every classical propositional
tautology (including every instance of the law of excluded middle ® Vv —®) is true under all assignments (assuming, as
we do, that we are working in a classical meta-theory).

The verification of the validity of the axioms and inference rules pertaining to quantifiers takes a little more work, but
is not difficult. Since we are working in a special case of sheaf semantics, where such facts are anyway well established
in far greater generality, we do not go into details. A sceptical reader may enjoy verifying this for themselves, using

their preferred formulation of the axioms and rules of multi-sorted first-order logic. O

By Theorem 4.9, atomic sheaf logic is just multisorted first-order classical logic with a nonstandard semantics. The
logic includes the equality relation, which is given a canonical interpretation. The nonstandard semantics allows relation
symbols to be interpreted as arbitrary subsheaves of product sheaves. Atomic sheaf categories possess interesting such
subsheaves that have no analogue in the standard semantics of first-order logic. Our main examples of this phenomenon
are the two relations from the title: equivalence and conditional independence.

To end this section, we observe that, in the case of our running example Shy; (Sur), atomic sheaf logic can incorporate
the relations of equivalence and conditional independence from multiteam semantics, as in Section 2. Syntactically, we
simply extend the logic with equivalence and conditional independence formulas (1) and (2), as in Section 2. Actually,
we can do this simply by including equivalence and conditional independence as particular relation symbols, so the
equivalence and conditional independence formulas are then instances of atomic formulas of the form R(xlAl, . .,x/,'}”).
Specifically, for equivalence, we include relation symbols ~a, A, with arity(~a,.. A,) = A1...ApA1... Ap. Similarly,
for conditional independence, we include relation symbols L4, A, B,...B,,|C;...C,, With arity(La, A, B,..B[Cy...C) =
Ar...AB1...BnCy...Ch.

To interpret the extended logical language, we instantiate the semantic interpretation of Definition 4.1, in the special
case of the category Sh,t(Sur), by requiring that every sort A is interpreted by a sheaf of nondeterministic variables
A := NV([A]) for some set [A]. We then interpret each relation ~, A, as the subsheaf of (H?:1 ﬁ) X ( i ﬁ) that
is isomorphic to the subsheaf >«(ryn_a,1) of NV(TTiL, [Ai]) X NV(TT;Z, [Ai])) from Proposition 4.4 along the canonical
isomorphism between the two product sheaves. A similar procedure, using 1L 4 g|c from Proposition 4.5, defines the
semantics of conditional independence formulas as subsheaves. These rather convoluted definitions are equivalent to
simply interpreting equivalence and conditional independence formulas directly using the conditions given in Figure 1.
The benefit of the convoluted explanation in terms of subsheaves is that it presents the extended logic as a special
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Equivalence and Conditional Independence in Atomic Sheaf Logic 15

case of general atomic sheaf logic, and in doing so explains why the meta-logical properties (locality, sheaf property,

classical logic) hold for the extended logic.

5 Atomic equivalence

The interpretation of equivalence formulas at the end of Section 4 was given only for the relation of equiextension of
nondeterministic variables, interpreted over the sheaves of nondeterministic variables in Sh, (Sur) using Proposition 4.4.

Atomic sheaves offer, however, a much more general perspective on the notion of equivalence. Every category
Sh,t(C) of atomic sheaves possesses a canonical notion of equivalence, which we call atomic equivalence. Specifically,
for every sheaf P, there is an associated subsheaf ~p C P x P that is an equivalence relation in Shat(C). (A subsheaf

E C P x P is an equivalence relation in Shyt (C) if E(X) C P(X) X P(X) is an equivalence relation, for every X € C.)
THEOREM 5.1 (ATOMIC EQUIVALENCE). Let P be any sheaf in Shat(C).
~p (X) ={(x,x") e PX)xP(X)|3Z,Juv": Z—> X. x-u=x"-u"}

defines a subsheaf ~p C P X P via Proposition 4.3. Moreover, this is an equivalence relation in Shyt(C).

Proo¥. For the subpresheaf property, suppose (x, x") € ~p (X). Thus, for some u,u": Z— X, we have x -u = x" - u’.
Consider any f: Y — X. By coconfluence, there exist g: W — Z and v: W — Y such that f o v = u o g. Similarly,
there exist g’: W/ — Z and v’: W/ — Y such that f oo’ =4’ o g’. Again by coconfluence, there exist h: V— W and
K :V— W’ suchthatgo h=g" o h’. Then:

x-fo-h=x-u-g-h=x"-u-g - W=x-fo 0.

Sovohando’ oh’: V— Y show that (x - f,x’ - f) € ~p(Y).
For the subsheaf property, consider any (x,x") € P(X) X P(X) and f: Y — X such that (x - f,x" - f) € ~p (Y);ie,
there exist u,u’: Z— Y suchthatx- f-u=x"- f-u'. Thus fouand fou’: Z— X show that indeed (x,x’) € ~p(X).
For the equivalence relation property, reflexivity and symmetry are trivial. For transitivity, suppose (x, x") € ~p (X)
and (x",x"") € ~p (X); i.e., there exist u, u':Z— Xsuchthatx -u=x"-u" andov,0’: Z/— X such that x” -0 = x"" - ¢v’.
By coconfluence, there exist w: W — Z and w’: W — Z’ such that u’ o w = v o w’. Then

’ ’ ’ ’ 77 / ’
X-u-w=x U -w=Xx 0w =X -0 -W

So u o wand v’ o w’ show that (x,x”") € ~p (X). O

In the special case of sheaves NV (A) of nondeterministic variables in Shat(SUr), the canonical equivalence ~ny(4)

coincides with the equiextension subsheaf a4 defined in Proposition 4.4.
PROPOSITION 5.2. The subsheaf ~ny(a) € NV(A) X NV(A) in Shat(SUr) coincides with»44C NV(A) X NV(A).

Proor. Consider any X, X’: Q — A.
Suppose there exist u,u’: Q" — Qsuchthat X -u=X"-v';ie, X ou =X’ ou’. Then X v« X’ because

X(Q) = Xu(Q)) = X'('(Q)) = X(Q) .

using the surjectivity of u and u’ for the first and last equalities.
Conversely, suppose X = X', ie., X(Q) = X'(Q). Define Q4 := X(Q), which is a finite nonempty set hence
(up to isomorphism) an object of Sur. The functions X and X’ are surjective from Q to Q4, hence give morphisms
Manuscript submitted to ACM
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16 Alex Simpson

X ~X (10)

X~y — y~X% (11)
X~y Ay~Z > X~Z (12)
X~y = n(X) ~ 7(y) (13)
XX~y y = X~y (14)
X~y A QX)) — Oy) (15)
X~x > 3. (ky~x.y) (16)

Fig. 3. Axioms for equivalence

X, X": Q— Qy in Sur. By coconfluence, there exist maps p,q: Q" — Q such that X o p = X’ o q. But this means that
X -p=X"-gq hence (X,X") € ~nv(4) (Q). O

Using the notion of atomic equivalence, we give a canonical semantics to equivalence formulas (1) in any atomic sheaf
topos. As at the end of Section 4, we include such formulas by considering them as given by relation symbols ~4, A,
with arity(~a,..A,) = A1...ApA1 ... Ay. The general semantic interpretation of sorts and relations (Definition 4.1) is

then extended to require that each relation symbol ~4, 4, is interpreted as the subsheaf

~ArAn ;ZNEX.”X&Q (ﬁxx&)x(&xx&) .

A
£ e
Figure 2. This is equivalent to defining:

The forcing relation X i, x;%,..., xf;” ~ y/l\l, cees yfl‘" is then covered by the general clause for relation symbols R in

A An An

A A An A An
Xirp XXy ~yphnyn™ & ((pOG)p (™) (p(yy ) op(Yn™))) € ~ayx--xa, (X)-

By Proposition 5.2, the above definition generalises the multiteam interpretation of independence as the equiextension
relation, in the case C = Sur and A = NV([A]), that was given in Section 4.

We now explore the logic of atomic equivalence, valid in any category of atomic sheaves. Fig. 3 lists formulas that are
valid in our semantics, which we identify as axioms for equivalence. In them, we have abbreviated variable sequences
by vectors. It is implicitly assumed that the lengths and sorts of the variable sequences match so that the equivalence
formulas are legitimate. Axioms (10)-(12) simply state that ~ is an equivalence relation. The next two assert structural
properties. In (13), 7 is any permutation of the variable sequence, and the axiom asserts that equivalence is preserved
if one permutes variables in the same way on both sides. By axiom (14), equivalence is also preserved if one drops
identically positioned variables from both sides. Axiom (15) is more interesting: equivalence enjoys a substitutivity
property, similar to the substitutivity property of equality. However, an important restriction is hidden in the notation.
It is assumed that all free variables in ® are contained in a sequence Z of distinct variables matching in length and
sorting with X, and hence also with y. We then write ®(X) for the substitution ®(X/Z), and similarly for ®(y). We
call (15) the invariance principle, as it states that properties not involving extraneous variables are invariant under
equivalence. Axiom (16) is called the transfer principle. If X and x' are jointly equivalent, then for any variable y there
exists a (necessarily equivalent) variable y’ such that %,y and x, y’ are jointly equivalent.

This soundness of axioms (10) to (14) is straightforward. The soundness of the invariance principle (15) is a conse-
quence of the following simple lemma.
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Equivalence and Conditional Independence in Atomic Sheaf Logic 17

LemMA 5.3. For any P € Shat(C) with subsheafQ C P. If x,x" € P(X) are such that (x,x") € ~p (X) and x € Q(X)
thenx’ € Q(X).

ProoF. Because (x,x") € ~p (X), we have that there exist u,u’: ¥ — X such that x - u = x" - ’. As x € Q(X) and
Q is a subpresheaf, we have x - u € Q(Y), that is x” - u’ € Q(Y). Hence, since Q is a subsheaf, x’ € Q(X). O

The invariance principle follows from the lemma, because @ defines a subsheaf of A; X - - - X A, via (9), where Ay, ..., Ay

An

are the sorts of the vector X = X! ,X," (and hence also of y) in (15).

AL
The soundness of the transfer principle (16) is a consequence of the lemma below.

LemMaA 5.4. Let P,Q be sheaves and let x,x" € P(X) such that (x,x") € ~p (X). For any y € P(X), there exists
p:Z— Xandy' € Q(Z) such that ((x - p,y - p), (" p,y")) € ~pxo (2).

Proor. Since (x,x") € ~p (X), there exist maps u, u': Y — X such that x - u = x” - u’. By coconfluence, let
0,0": Z— Y besuch thatu o v =u’ ov’. Define p :=uovandy’ := y - u-v’. By coconfluence again, let w,w’: W — Z
be such that w o v = w’ 0 v’. Then w, w’ show that ((x - p, y - p), (x" - p, y’)) € ~pxp (Z), because:

’ ’ ’ ’ ’ ’

’ ’
x.p.w:x.u.v.w:x.u.v.w =X Uu-0-w :x.p.w

and

6 Independent pullbacks

Whereas Section 5 has given equivalence formulas a canonical interpretation in an arbitrary atomic sheaf topos Sh,t(C),
the interpretation of conditional independence formulas (seemingly) requires additional structure on the generating

category C. Primary amongst this is that C possess independent pullbacks, as defined below.

Definition 6.1 (Independent pullbacks). A system of Independent pullbacks on a category C is given by a collection of

commuting squares in C, called independent squares. A commuting square

f

X —Y

g\ Ju (17)

72w
is then defined to be an independent pullback if it is independent and it satisfies the usual pullback property restricted to
independent squares; i.e., for every independent square

7

X —Y

g, \ Ju
[
zZ — W
there exists a unique g : X’ — X such that f o p = f/ and ¢’ o p = g. The assumed collection of independent squares

and derived collection of independent pullbacks are together required to satisfy the five conditions below.
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18 Alex Simpson

(IP1) Every commuting square of the form below is independent.

X —Y

.

zZ —— 7
(IP2) If the left square below is independent then so is the right.

x L.y x4,z
Z—sw Y —“» W

(IP3) If (A) and (B) below are independent, then so is the composite rectangle (AB).

X .y _t,z

Jwd o |
U——V ——Ww

u 0

(IP4) If the composite rectangle (AB) above is independent and (B) is an independent pullback then (A) is
independent.

(IP5) Every cospan Y L w Zhasa completion to a commuting square (17) that is an independent pullback.

It is an easy consequence of axioms (IP1) and (IP3) that, in any commuting diagram as below, if the right square is

7\
™~

A straightforward consequence of this property in turn is that, in any independent pullback square (17), the span f, g is

independent then so is the outer kite.

Jjointly monic, i.e., for all parallel pairs s,t : V— X, if both fos=fotandgos=gotthens=t.

Definition 6.2 (Descent property). We say that independent-pullback structure has the descent property if, in any

commuting diagram of the form (19) above, if the outer kite is independent then so is the right-hand square.

As a first (trivial) example of independent pullbacks, in any category C with pullbacks the collection of all commuting
squares defines an independent pullback structure on C satisfying the descent property, for which the independent

pullbacks are exactly the pullbacks. The category Sur (which does not have pullbacks) provides a nontrivial example.
Definition 6.3 (Independent square in Sur). Define a commuting square in Sur

ox £+ ay
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to be independent if p 1L q | r o p, using conditional independence of nondeterministic variables (Definition 2.2).
PROPOSITION 6.4. Definition 6.3 endows SUr with independent pullback structure satisfying the descent property.

Proor. Because the square is commuting and the maps are surjective, the condition of Definition 2.2 simplifies
to: for all wy € Qy and wz € Qz, we have r(wy) = s(wz) implies there exists wx € Qx such that p(wx) = wy and
q(wx) = wz.

The easy verification of properties (IP1) and (IP2) is left to the reader.

For (IP3), suppose (A) and (B) in diagram (18) are independent. We show that tos 1L p | rotos, using the characterisation
above. Accordingly, suppose wz € Qz and wy € Qg are such that r(wz) = v(u(wy)). We need to find wx € Qx such
that t(s(wx)) = wz and p(wx) = wy. Because r(wz) = v(u(wy)), the independence of (B) gives us wy € Qy such that
t(wy) = wz and q(wy) = u(wy). By the latter equation and the independence of (A), there exists wx € Qx such that
s(wx) = wy and p(wz) = wy. We then have t(s(wx)) = t(wy) = wz as required.

For (IP4), we verify the stronger property that if the composite rectangle (AB) in diagram (18) is independent and if ¢, g
are jointly monic then (A) is independent. In the category Sur the joint monicity of £, g means that, for all wy, v}, € Qy,
if both t(wy) = t(0}) and g(wy) = q(}) then wy = . To prove that (A) is independent, suppose wy € Qy and
wy € Qu are such that g(wy) = u(wy). Then r(t(wy)) = v(g(wy)) = v(u(wy)). So, by the independence of (AB), there
exists wx € Qx such that t(s(wx)) = t(wy) and p(wx) = wy. We then have q(s(wx)) = u(p(wx)) = u(wy) = q(wy).
It follows, by the joint monicity of t, g, that s(wx) = wy. Together with the equation p(wx) = wy, this verifies the
independence of (A).

For (IP5), the construction in the proof of Proposition 3.5 completes any cospan to an independent pullback square,
as is easily verified.

We leave the straightforward verification of the descent property to the reader. O

A more abstract way of describing the independent pullback structure on Sur is that a commuting square in Sur is
independent if and only if it is a weak? pullback in Set, and it is an independent pullback if and only if it is a pullback
in Set. One can use this to give a more abstract verification that (IP1)-(IP5) and descent hold.

We end this section with some general consequences of the definition of independent pullback structure. The first

such consequence is that an analogue of the pullback lemma holds for independent pullbacks.

LEMMA 6.5 (INDEPENDENT-PULLBACK LEMMA). Suppose C has independent pullback structure.

(1) If(A) and (B) in (18) are both independent pullbacks then so is the composite rectangle (AB).
(2) If (B) and the composite rectangle (AB) in (18) are both independent pullbacks then so is (A).

Proor. The proof has the same structure as that of the standard pullback lemma, with the additional burden of
having to verify that various commuting squares are independent. We give the proof of statement 1 insofar as it involves
independence properties, leaving the standard uniqueness argument and the proof of statement 2 to the reader.

Suppose (A) and (B) are independent pullbacks. We need to verify that (AB) is an independent pullback. Accordingly,
suppose that z : T— Z and w : T — U are such that the top square i the diagram below is independent. We need to

2A weak limit is a cone that enjoys the existence property but not necessarily the uniqueness property of a limit.
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20 Alex Simpson

show that there exists a unique map x : T — X such that pox =wandtosox =z.

z

T — 7
WJ J
v w
J Jidw
V— W

0
By axioms (IP1) and (IP2), the bottom square above is independent, hence, by (IP2) and (IP3), so is the composite
rectange. Since (B) is an independent pullback, there exists a uniquey : T— Y such thattoy=zandgoy =uow.

This means that the top square in the diagram above factorises as

Since the composite rectangle is independent and the right-hand square is (B), which is an independent pullback, the
left-hand square is independent by (IP4). Since (A) is an independent pullback, there exists a unique x : T — X such
that pox =wand s ox =y, whence t o s o x =t o y = z. The proof that x is the unique map satisfying p o x = w and

t o s o x = z then proceeds as usual. O

By axiom (IP5), any category with independent pullbacks is a fortiori coconfluent, hence we can consider the category
Sh,t(C) of atomic sheaves, for small such C. The remaining results in this section demonstrate a pleasing interplay
between atomic sheaves and independent pullback structure. They are aimed at readers who are interested in the
general category-theoretic framework. Readers keen to arrive at the atomic sheaf logic of conditional independence

may prefer to skip to the next section.

THEOREM 6.6. Suppose C is a small category with independent pullback structure. The following are equivalent, for
every P € Psh(C).

(1) P is an atomic sheaf.

(2) P maps independent squares in C to pullbacks in Set.

Note that, by contravariance, P maps an independent square of the form (17) to a pullback square in Set with apex PW.
The proof of Theorem 6.6 is an adaptation to the axiomatic structure of independent pullbacks of a standard argument
(see, e.g., [23, A 2.1.11(h)]) that sheaves in the Schanuel topos can be characterised as pullback preserving functors from

the category | of finite sets and injective functions to Set.

Proor. For the (1) = (2) implication, suppose that P is an atomic sheaf. We first show that P maps independent
pullbacks in C to pullbacks in Set. Consider any independent pullback of the form (17). We need to show that the square
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below is a pullback in Set.
P(x) <L pey)
(—)'9[ \(—)-u
P(2) <= P(W)

Accordingly, let y € P(Y) and z € P(Z) be such that y - f = z - g. We need to show that there exists a unique w € P(W)

suchthatw-u=yandw-ov =z

We show that z is v-invariant. Let s,t : T — Z be such that v o s = v o t. By the independent-pullback lemma,
we can construct an independent pullback of u along v o s = v o ¢, either by composing the independent pullback (17)
with the independent pullback of g along s, or by composing (17) with the independent pullback of g along t. By a
straightforward argument, this means the independent pullbacks of g along s and ¢ can be given the same left edge ¢’
as in the diagram below, which comprises three independent pullback squares (one with f and v, one with s’ and s and

one with ¢’ and t).

’

s f
S—r X ——Y

[/

N
T_:Z—U>W

t

We have:
Z.s.g’zz.g.s’:y.f.s’:y.f.t’:Z.g.t’zz.t.g’ .

Since P is separated (Definition 3.9) it follows that z - s = z - t. Thus z is indeed v-invariant.

By the sheaf property there exists w € P(W) such that z = w - v. Then:

w-u-f=w-v-g=z-g=y-f .

So, by separatedness, we have found w such that w - u = y and w - v = z. Such a w is unique by separatedness.
Having established that P maps independent pullbacks in C to pullbacks in Set, we show that it more generally maps
all independent squares to pullbacks. Accordingly, suppose (17) is an independent square. By taking the independent

pullback of u along v, we can obtain (17) as a composite:

S P

X—S—Y

|k

Z—7Z — W
Id;z 0

Since the right-hand square is an independent pullback, it is mapped by P to a pullback in Set. The left-hand square is
mapped by P to a commuting square in Set with an identity in a position that makes it a trivial pullback. Thus P maps

the composite square (17) to a composition of pullbacks, hence to a pullback.
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22 Alex Simpson

For the (2) = (1) implication, let y € P(Y) and r: Y —— X in C be such that y is r-invariant. Consider an

I

Because y is r-invariant, y - p = y - q. By assumption, P maps the above square to a pullback in Set. Hence, there exists a

independent pullback of r along itself

P
e

E—
r

unique x € P(X) such that y = x - r, as required by the sheaf property. O
COROLLARY 6.7. The functor ay : C — Shy(C) maps independent squares in C to pushouts in Shat (C).

ProoF. This is a straightforward consequence of Theorem 6.6 on account of the bijections
Shat(ay(X), A) = Psh(y(X), 4) = A(X) ,

natural in X and A, given by the left-adjoint property of the associated sheaf functor and by the Yoneda lemma.
In more detail, consider any independent square in C of the form (17). Suppose we have maps f and y in Sh,;(C)

making the outside kite below commute.

(
ay(0) 2L ay(v)

ay(g) l ay(u)

ay (o)
ay(2) % ay(w)

The natural bijections above mean that f and y correspond respectively toy € A(Y) and z € A(Z) satisfyingy - f =g-v.
Since, by Theorem 6.6, A maps the square (17) to a pullback in Set, there exists a unique w € A(w) such thatw-u =y
and w - v = z. Translating back along the natural bijections, there exists a unique map a: ay(W) — A such that

a-ay(u) = fand a - ay(v) =y, as required. O

COROLLARY 6.8. The following are equivalent for a small category C with independent pullbacks.

(1) Every representable presheaf is an atomic sheaf.

(2) Every independent square in C is a pushout.

Proor. For the (1) = (2) direction, suppose every representable is an atomic sheaf. Then ay and y are naturally
isomorphic, hence ay : C — Shy(C) is full and faithful. As a fully faithful functor, ay reflects (co)limits in general, and
so pushouts in particular. Thus independent squares are pushouts in C by Corollary 6.7.

For the (2) = (1) direction, it holds from the definition of y(X) as C(—, X) that every representable presheaf
y(X) : C°P — Set maps any colimit of a D-shaped diagram in C to a limit of the induced D°P-shaped diagram in Set.
In particular, y(X) maps pushouts in C to pullbacks in Set. So, if every independent square is a pushout in C, then
representables map independent squares to pullbacks in Set, and it follows from Theorem 6.6 that representables are
atomic sheaves. O
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7 Atomic conditional independence

A main goal of this section is to define a canonical subsheaf 1L 4 gjc € A X B X C representing a conditional indepen-
dence relation between sheaves A, B, C in atomic sheaf toposes Sh,t(C). To achieve this, we shall require that C have
independent pullbacks. We shall also need to assume that the sheaves A, B, C enjoy the special property of having

supports, a notion that we now define.

Definition 7.1 (Supports). A representable factorisation of an element x € P(X), where P € Psh(C), is given by a triple
(Y,q,y) such that: ¢ : X — Y is a map in C, we have y € P(Y) and x = y - g. A morphism from one representable
factorisation (Y, ¢, y) of x to another (Y’,q’,y’) is givenby amapr: Y — Y inCsuchthatrog=¢q andy’ -r=y. A
representable factorisation (Y, g, y) is called a support for x when it is a terminal object in the category of representable
factorisations of x. A presheaf P € Psh(C) is said to have supports if, for every X € C, it holds that every x € P(X) has

a support.

For readers familiar with the category of elements f P of a presheaf P, we remark that a support for x € P(X) is the
same thing as a terminal object in the co-slice category (X, x)/ / P. This elegant formulation is used as the definition of

support in [28] (there called minimal support).

LEMMA 7.2. Suppose all maps in C are epimorphic and that P € Psh(C) has supports. Then, for any x € P(X) and map
YL X in C, a representable factorisation (Z, t,z) of x is a support for x if and only if (Z,t o q, z) is a support forx - q.

ProOOF. Suppose (Z,t,z) is a support for x. Let (W, u, w) be a support for x - q. Because (Z, t o ¢, z) is a representable
factorisation of x - g, there exists a unique map r : Z — W that is a morphism from (Z,t o g, z) to (W, u, w). Then
(W, r o t,w) is a representable factorisation of x. So there exists a unique map s : W — Z that is a morphism from
(W,r ot,w) to (Z,t,z). That is, r is the unique map such thatr ot o g = u and w - r = z, and s is the unique map
such that sor ot =t and z - s = w. Since ¢ is an epi, the equation s o r o t = ¢ implies s o r = idz. Then we have
tog=sorotoq=sou, which means that s is a morphism of x - q factorisations from (W, u, w) to (Z,t o g, z). So
r o s is a morphism from (W, u, w) to itself. Since (W, u, w) is the terminal x - q factorisation, r o s = idyy. Thus r and s
are mutual inverses, and ¢ is an isomorphism of x - g factorisations from (W, u, w) to (Z,t o q,z). Hence (Z,t 0 q,z) is
also a support for x - q.

Conversely, suppose (Z,t o g,z) is a support for x - g. Let (V,v, w) be a representable factorisation of x. Then
(V,v 0 g, w) is a representable factorisation of x - q. So there exists a unique map s : W — Z that is a morphism from
(V,uvoq,w)to(Z,togq,z),thatis,sovop=topandz-s=w.Since pisanepi,soov =t and so s is a (clearly unique)

morphism from (V,v, w) to (Z, t, z). This shows that (Z, t, z) is a support for x. ]

We shall also require presheaves with supports to be closed under finite products. This follows from a further

property of the category C (dual to the existence of M-images as defined in [41, §5.1]).

Definition 7.3 (Pairings). A pair factorisation of a span Y i X% Zina category C is given by (X’,q’,f",q’)
where ¢’ : X —» X’ and Y i X’ g—,> Z are maps in C that satisfy f" o ¢’ = f and ¢’ o ¢’ = g. A morphism from a
pair factorisation (X', q’, f/,¢") of f, g to another (X", q”, f",g”’) isamapr : X" — X" in C such thatr o ¢’ = ¢”,
f” or=f"andg” or =g’. A pair factorisation (X', ¢’, f’, ¢") is said to be a pairing for f, g if it is a terminal object in
the category of pair factorisations of f, g. We say that the category C has pairings if every span f, g has a pairing.

PROPOSITION 7.4. Suppose all maps in C are epimorphic and that C has pairings. If P, Q € Psh(C) both have supports,

then so does the product P X Q.
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Proor. Consider any element (x,y) € (P X Q)(X). Let (U,u,x”) be support for x and (V,0,y") support for y. Let
(W, w,u’,0") be a pairing for u,v. We show that (W, w, (x’ - u’,y’ - v”)) is support for (x,y).

Let (Z,t, (x”",y”")) be any representable factorisation of (x,y). Then (Z, t,x’") is a representable factorisation of x,
so there exists a unique map r : Z — U that is a morphism from (Z,t,x"’) to (U, u,x”), i.e., such that r o t = u and
x"-r = x"". Similarly, there exists a unique map s : Z — V such thatsot =vandy’-s =y Since (X, t,r,s) is a pair
factorisation of u, v, there exists a unique w’ : Z— W such that w’ o t = w and v’ o w’ = r and v’ o w’ = 5. We claim
that w’ : Z— W is the unique morphism from (Z, t, (x”’,y"")) to (W, w, (x" - u/,y’ - v”)). We have seen that w’ ot = w.
Since ¢ is epimorphic, this determines w’ uniquely. It also holds that x” -’ - w’ = x" - r =x" andy’ -0’ -w' =y’ -s = y”.

So w’ is indeed a morphism of representable factorisations. O
We explore the above properties in the case of our running example Sh,:(Sur).

PROPOSITION 7.5. In Shat(SuUr) every sheaf of the form NV(A) has supports.

X/
Proor. Consider any X € NV(A)(Q), ie, X: Q — A. Factorise X as a composite Q L RN where p is
surjective and X’ injective. It is easy to verify that (Q’, p, X”) is a support for X. O

PROPOSITION 7.6. The category SUr has pairings.

Proor. Consider a span Qy & Q 9, Q in Sur. Factorise the function (p,q) : Q — Qy X Qz as Q Lo M
Qy X Qz where r is surjective and (p’, ¢") injective. Then (Q’,r, p’, ¢’) is a pairing of p, q. O

Proposition 7.5 is in fact subsumed by a much more general result, which however has a far more involved proof..
THEOREM 7.7. In Shat(SUr) every sheaf has supports.

Because this theorem is not central to the development, we relegate its proof to Appendix A

We henceforth impose global assumptions on our category C.

Definition 7.8. We say that a small category C has the requisite structure if: every map in C is an epimorphism, it has

pairings, and it has independent-pullback structure satisfying the descent property.

The reason for imposing the assumption that every map is an epimorphism is that it allows us to apply Lemma 7.2 and
Proposition 7.4. Because the role of C is to serve as the gateway to the category Sh,C of atomic sheaves, this assumption
is very mild. As discussed at the end of Section 3, it is weaker than assuming that all representable presheaves are
atomic sheaves. Moreover, every atomic sheaf topos is equivalent to Sh,;C for some coconfluent small category C in
which every map is an epimorphism.

Since it is obvious that every map in Sur is epimorphic, Propositions 7.6 and 6.4 show that the category Sur has the
requisite structure.

For the remainder of the present section, let C be a small category with the requisite structure.

We define a general atomic conditional independence relation for atomic sheaves A, B, C on C with supports. For any
X € C, define

Lapic(X) € (AXBXO)(X) (20)

to consist of those triples (x,y,z) € (A X B X C)(X) that satisfy the condition: there exists an independent square
rop =soqin C (as in the diagram below), and there exist elements (x",u") € (A x C)(Xx), and (y’,v") € (Ax C)(Xy)
and z’ € C(X;) suchthatx’ -p=xandy’ -q=yandz’ - r=u’ and 2’ - s =0’ and (X3, r o p, z’) is support for z. The
Manuscript submitted to ACM
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data in the condition above is illustrated by the hybrid diagram below, where the symbol L indicates that the square is

independent.

X—p>

|

Xxw,éxg
C

The above diagram is hybrid in the sense that the arrows in it represent three distinct kinds of entity. Arrows of the

Xy —— X;

(y'.0') l

BxC

B2 (21)

T

form X — Y between objects of C represent maps in C. Arrows of the form X — A, from an object X of C to a sheaf A,
represent elements of the set A(X). Arrows of the form A — B between sheaves represent maps in Shyt(C). By the
Yoneda lemma, such hybrid diagrams can equivalently be interpreted as ordinary diagrams in the presheaf category

Psh(C), with objects X of C being interpreted as representable presheaves yX.

LEMMA 7.9. In the definition of 1L 5 pc(X), we can, without loss of generality, choose the data so that (Xx, p, (x',u")) is
support for (x,z) and (Xy, q, (y',v")) is support for (v, z).

PRrROOF. Suppose we have:

x 2+ x, AxC
qJ A rJ lnz (22)
Xy —s> X, T» Q

where (X, r o p, z’) is a support for z. Let (X[, t, (x”’,u’”)) be support for (x’,u’) € (AX C)(Xx). Then (X, t,u”’) isa
representable factorisation of z’ - r. By Lemma 7.2, (Xz,r,2’) is a support for z’ - r. So there exists r’ : X; — X such
that r’ ot = r and z’ - ¥’ = u’”’. We have thus obtained the data in the hybrid diagram below.

" u'")

X o x, e xt &

A

c

T2 (23)

<
-—
=
~
—
E
‘\
—
|0 —— X

s idx, z

Morover, by Lemma 7.2, it holds that (X}, ¢ o p, (x”’,u’’)) is support for (x’,u’) - p = (x,z). We have thus shown
how diagram (22), gives rise to diagram (23), in which the composite independent square satisfies the desired support
property for (x, z).

By starting with the new diagram and repeating the same argument in a vertical rather than horizontal direction,

one similarly satisfies the required support property for (y, z). O

THEOREM 7.10. Suppose A, B, C are atomic sheaves with supports. Then 1L 4 g|c(X) € (AXBXC)(X) defines a subsheaf

via Prop. 4.3.

Proor oF THEOREM 7.10. We first show that 1 4 p|c is a subpresheaf. Suppose (x,y,z) € L4p|c(X) and t :
Y — X is a map in S; that is, we have the data in diagram (21) and (X3, r o p, z’) is a support for z. We need
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to show that (x -7, y -7, z-r) € L4 |c(Y). This holds on account of the data illustrated below.

y_pot,xxw,é C
y—— X 2

Indeed, (Xz, ropot, z’) is support for z o r on account of Lemma 7.2, and the marked square is independent since it is

a composition of two independent squares:

t p

Y — X — X,

For the subsheaf property, suppose (x,y,z) € (AXBXC)(X) and (x-t, y-t, z-t) € Ly p|c(Y) wheret: Y — X
is a map in S. We need to show that (x,y,2z) € L4 |c(X).
The assumption gives us the data below

(x"u)

Y—p>Xx — AxC
ql\ JL Jr
y— X 7[2
<y'u/>l \
z
BxC ——C

where, x’ - p’ =x-tandy - ¢’ =y-tand (Xz royp’, z’) is support for z - t. By Lemma 7.9, we can assume that
(Xx, p’, (x",u")) is support for (x-t,z-t) and (Xy, ¢, (y’,v")) is support for (y-t, z-t). Since (X, t, (x, z)) is a representable
factorisation of (x - £,z - t), we have p’ = po t and (x,z) = (x" - p, u’ - p), for some p: X — X. Similarly,q’ = qot
and (y,2z) = (v - ¢, v’ - q), for some q: X — Xj,. Then

ropot:top’:soq’:soqot .

Since t is epimorphic, r o p = s o g is a commuting square, which is independent by the descent property. Accordingly,
we have precisely the data in diagram (21). Moreover, since (X, ropot, z’) = (Xz, r o p’, ') is support for z - ¢, it

follows from Lemma 7.2 that (X, r o p, z’) is support for z, as required. O

In the special case of sheaves NV(A) of nondeterministic variables in Shat(Sur), the general atomic conditional

independence defined above coincides with the multiteam conditional independence from Proposition 4.5.

ProposITION 7.11. The subsheaf

Lnva)NvB)INV(C) € NV(A) x NV(B) X NV(C)
Manuscript submitted to ACM
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1355 in Shat(SUr) coincides with 1 5 gjc S NV(A) X NV(B) X NV(C) from Proposition 4.5.
1354
1355
1356 PROOF. Suppose X : Q - A, Y:Q — B, Z: Q — C are nondeterministic variables such that X 1 Y | Z, according
1357 to Definition 2.2. Define

1358

1350 Qx ={(x,2) e AXC|Jwe Q. x=X(w)and z = Z(w)}
1360 Qy ={(y,2) € BXC|JweQ.y=Y(w) and z = Z(w)}
1361

1362 Qz =2Z(Q)

1363

1362 Thenthehybrid diagram below, shows that (X, Y, Z) belongs to the atomic conditional independence LNy (a) nv(B) [NV(C) (€2)s

1365 since (Qz, Z, z > z) is support for Z, by the definition of Q.

1366

e o — XD, g EAE \via)x V(o)
1368

1369 (Y,Z2) AL ln’z

1370 Qy Q, ﬂz

1371 2 2oz

1372 (3:2)—(,2) l

1373

1374 NV(B) x NV(C) 7T2 NV(C)

1375

- Conversely, suppose (X,Y,Z) € Lny(a),Nv(B)|NV(C) (). That is, we have the data in the hybrid diagram below,

1377  where X’ -p=XandY' -q=Y and (Qgz, rop, Z’) is support for Z.

1378 P (X",U")

e o ax NV(4) x NV(C)
1380

1381

1382 Qy —— Qy 7

1383 s

1384 Y v )l 7

1385

e NV(B) X NV(C) ——— NV(C)

1::; We show that X 1L Y | Z, according to Definition 2.2. Suppose we have w’, w”’ € Q such that X(»’) = aand Z(»’) = ¢

550 and Y(w”’) = b and Z(w”") = c. Then

o Z'(r(p(a))) = Z(0') = Z(") = Z' (s(q(e"))) .
% Since (Qg, r o p, Z') is support for Z, the function Z’: Q7 — C is injective, hence r(p(w’)) = s(g(w’")). Since the
1393

10, top-left square is independent, there exists @ € Q such that p(w) = p(»’) and g(w) = g(w”). Then X (w) = X" (p(w)) =
s X' (p(0’)) = X(w”) = a. Similarly, Y(w) = b, and Z(w) =c. O
1396
1397

1398 We now turn to the extension of the atomic sheaf logic of Sections 4 and 5 with conditional independence formulas (2).
399
1400 Once again, we view this extension as being obtained by including a family of relation symbols. In this case we add

oy Telations 13 Bic and require that each such relation is interpreted as the subsheaf

1402

| >t
oot
ol

1403 JLB,E\

1404

C AXBX

|O
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XL1ylZ - 20 L2’ (y) 7" (@) (24)
XL1yly (25)
XLylZ - yLX|Z (26)
XLV, Z|W — XLy|w (27)
XLy,Z|W — xLy|zZw (28)
XLY|ZW AXLZ|W — XL1y,Z|w (29)
Jy. (YW ~Xw A yLZ|W) (30)
Fig. 4. Axioms for conditional independence
where we write, e.g., é for the product [T}, An, where A is the vector of sorts Ay, . .., A,. To ensure that Ligc is well

defined, we require that every sort A is interpreted as a sheaf A with supports.

Figure 4 lists formulas valid in this semantics that we single out as a suitable list of axioms for reasoning about
conditional independence. Axiom (24) asserts that conditional independence is preserved under permutations within
each of the three lists of variables involved. This axiom, together with axioms (25)—(29) are all standard axioms for
conditional independence, appearing in closely related forms in [7, Theorem 3.1 and Lemmas 4.1-4.3], in [40, Theorem 1]
and in the work of Pearl, Paz and Geiger [15, 16, 33] (in which only conditional independence statements of the restricted
form X L y | Z for three disjoint sets of variables X, y and Z are considered). The axioms appear more explicitly in their
present form in Dawid’s axioms for the notion of separoid [8]. We leave the straightforward verification of the soundness
of axioms (24)—(27) to the reader. The soundness of axioms (28) and (29) is more technical. To avoid encumbering the
main development with these technical proofs, they are given in Appendix B.

Whereas axioms (24)-(29) concern conditional independence in isolation, axiom (30) captures the interaction between
conditional independence and atomic equivalence. Axiom (30) makes essential use of the existential quantifier of atomic
sheaf logic to capture a key first-order property: given variables X,Z, W one can always find variables y that are
conditionally independent from Z given W, but such that y, W is jointly equivalent to X, w. We call this property the
independent existence principle: independent variables with any desired distribution always exist. The validity of the

principle of independent existence (30) is established by Lemma 7.12 below.
LEMMA 7.12. Givenx € A(X), z € B(X) andw € C(X), thereexist p: Y — X andy € A(Y) such that

((y w-p), (x-p, w-p)) € ~axc (V) (31)
(yz-pw-p)€ Lag|c(Y) . (32)

Proor. Let (Z,s, w’) be support for w, and consider the independent pullback of s : X — Z along itself:
P

Yy — X

1l

—_— 7
N

We have:
w-p=w-s-p=w-s-q=w-q .
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Definey :=x - q.
By the independent pullback above, there is a unique map t : Y — Y such thatpot =gandgot = p. So:

Thus the pair idy, t: Y — Y shows that (31) holds.

For the independence statement, we have:

Y—> —>

[

p

I

(zow

(y w-p)=(x-qw-q) = (x-pot,wopot) .
X
X

A

The first component of the top side is x - ¢ = y € A(Y). The first component of the left side is z - p € B(Y). Moreover, by

BxC—F—

Lemma 7.2, (Z, s o p, w’) is support for w - p. Thus we indeed have (32). O

As an interesting consequence of the axioms, we prove that existence properties are preserved under conditional
independence, in the sense of the result below. This provides a first-order reasoning principle for conditional inde-
pendence, whose scope potentially extends beyond atomic sheaf logic to more general contexts in which there is a

conditional independence relation but no analogue of the relation ~ of atomic equivalence.

THEOREM 7.13 (EXISTENCE PRESERVATION). The schema below follows from the axioms in Figs. 3 and 4.

- - - - - -

(Fy. (%, y, W) — VZ. (XxLZ|w — Ty (x,yLZ|Ww A O(X¥,W)))

Here we adopt the same convention as in the invariance principle. In (X, y, w) every free variable in ® has been substituted

- - -

by one of the variables in X, y, w

Proor. Lety be such that
DX, ¥, W) . (33)

Consider any 7. By the independent existence principle (30), there exists y’ such that

LKW~ YR, W (34)
and
V' LF| %W (35)
Suppose
XLZ|Ww. (36)

Then (35) and (36) combine to give X, )7’ 17| w, by the axioms for conditional independence.

Further, (33) and (34) combine to give ®(X, )7’ , W), by the invariance principle (15). O

8 Probability sheaves

In this long section, we present another instance of our axiomatic structure: atomic sheaves over standard Borel

probability spaces. The idea is that such spaces take the role of sample spaces, and random variables over such sample
Manuscript submitted to ACM
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spaces collectively form an atomic sheaf. More precisely, for any standard Borel space A, we shall obtain a sheaf RV (A)
of all A-valued random variables. For this aim, the standard-Borel assumption serves three purposes. Firstly, it is
sufficiently general that it encompass both discrete and continuous probability. Secondly, it provides a small category of
sample spaces to build atomic sheaves over. Finally, it also provides useful technical machinery (such as disintegrations
of random variables), which would be unavailable in general if arbitrary probability and measurable spaces were used.
This machinery is essential in showing that the category of sample spaces has independent pullback structure. When
interpreted over the sheaves of random variables RV(A), atomic sheaf logic provides logical principles governing
the relations of almost sure equality, of equality in distribution and of conditional independence with its standard
probabilistic meaning, since these three relations are respectively encapsulated as equality, atomic equivalence and
atomic conditional independence in the logic.

In order to fully understand the technical development in the present section, it is necessary to have some background
in probability and measure theory. Nevertheless, we try to also explain the main ideas informally, so help readers
without the necessary background to follow the line of development at a high level.

Standard Borel spaces will be the value spaces of random variables, and they will also be the structures over which

we build sample spaces.

Definition 8.1 (Standard Borel space). A standard Borel space (SBS) is a measurable space (A, B4) where A is a Borel
subset of a Polish space T (i.e., a complete separable metric space) and By is the o-algebra {SN A | S C T is Borel}. A
morphism of standard Borel spaces from (A, B4) to (B, Bp) is a function f : A — B that is measurable, i.e., f~1(S) € B,
forall S € Bg.

When (A, B,) is a standard Borel space, we shall refer to the sets in B4 as the Borel subsets of A, which is justified
because A can always itself be given a Polish topology in which B4 is the Borel o-algebra. As is well known, the image
f(C) of a Borel subset C C A under a measurable function f : A — B, where (B, Bp) is also standard Borel, need not
itself be a Borel subset of B, but f(C) is always an analytic subset of B.

On the one hand, the collection of standard Borel spaces is very rich, as it incorporates most measurable spaces
that arise naturally in mathematics. On the other, it is also limited, since there are only two types of standard Borel
spaces: (i) spaces (A, P(A)), where A is a countable (possibly finite) set with its full powerset P (A) as the o-algebra;
and (ii) spaces (A, B4) that are isomorphic to the real numbers with the Borel o-algebra (R, 8). As a consequence
of this classification, every standard Borel space has a measurable embedding into the interval [0, 1] with the Borel
o-algebra By 1.

Standard Borel probability spaces will act as our sample spaces. As such, they will provide the objects of the category

of sample spaces over which we shall consider atomic sheaves.

Definition 8.2 (Standard Borel probability space). A standard Borel probability space (SBPS) is a triple (Q, Bq, Pg)
where (Q, Bq) is an SBS and Pg: Bg — [0,1] is a probability measure. A morphism of standard Borel probability
spaces from (Q, B, Pg) to (Q', By, Po) is an SBS morphism ¢ from (Q, Bg) to (Q, Bg) that preserves measure; i.e.,
g+(Pg) = Pqy, where g (P) is the pushforward measure S +— Pq(q~1(S)) : Bgr — [0,1].

As with standard Borel spaces, standard Borel probability spaces include the most common probability spaces that one
naturally encounters in mathematics. Any standard Borel probability space (Q, Bq, Pg) can be decomposed uniquely
into its discrete and continuous parts, moreover the continuous part has a very constrained form. In detail, there exist

unique Borel measures 8, 1 : Bg — [0, 1] such that P = § + y, the measure § is discrete (i.e., 5(B) = Y, 0({x})
Manuscript submitted to ACM
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for every B € Bg), and either y = 0 or (Q, Bq, y) is isomorphic, via measure-preserving functions, to the interval
([0, c], Byg,c}> A), where ¢ := Po (Q), with the Borel o-algebra B[] and the (Borel restriction of) Lebesgue measure
A B[O,c] — [0, c].

In probability theory, a random variable is a measurable function from a probability space, called the sample space,
to a measurable space, the value space. In this paper, we restrict ourselves to the case in which these spaces are both
standard Borel. This is broad enough to incorporate both the discrete and continuous random variables arising most

commonly in mathematics.

Definition 8.3 (Random variable). If Q is an SBPS and A is an SBS (for notational convenience we here and henceforth
abbreviate (A, B4) as A and (Q, B, Pg) as Q), a random variable X : Q — A is a measurable function from (Q, 8Bg) to
(A, B4). The SBPS Q is called the sample space of X, and the SBS A is called the value space.

We next define the three main relations between random variables we shall be interested in: almost-sure equality,
equidistribution and conditional independence.

In general, we say that a property of elements w € Q holds for Pg-almost-all w if there exists S € B with Pq(S) =1
such that the property holds for every w € S.

Definition 8.4 (Almost-sure equality). Two random variables X, Y : Q — A are almost surely equal (notation X =, Y)
if X(w) = Y(w) holds for Pg-almost-all w. (Since A is a standard Borel space, the set {w € Q | X(w) = Y(w)} is
measurable, and the above condition is equivalent to asking that P ({w € Q | X(w) = Y(w)}) = 1)

The distribution (or law) of a random variable X : Q@ — A is the probability measure Px : 84 — [0, 1] defined as the
pushforward Py := X, (Pq).

Definition 8.5 (Equidistribution). Two random variables X,Y : Q — A are equidistributed (notation X d Y)if Px = Py.

An important consequence of only considering random variables between standard Borel spaces is that random
variables have disintegrations. We state this property as Fact 8.6 below. A proof of can be found in [10]. We mention

also that an equivalent statement to Fact 8.6 appears as Theorem 6 of [6].

Fact 8.6. Every random variable X: Q — A has a disintegration; that is, a Markov kernel Dx : A X Bg — [0,1]
(x,5) — PX‘l(x) (S) : AXxBg — [0,1]

satisfying the two properties below.

(D1) Px-1(x) (X~ 1(x)) = 1 for Px-almost all x € A, and
(D2) for every S € Bq,

Po(S) = / Py1.(3) () dPx(x)

By the Markov kernel property, the function S = Py -1 (S) is a probability measure Px-1(,) : Bg — [0, 1], for every
x € A. By (D1), Px-1(4) can be thought of as a probability measure on the fibre set X~1(x) € Bg, which, by (D2),
represents the conditional probability distribution on w € Q under the condition X(w) = x. Properties (D1) and (D2)
together characterise the mapping x + Px-1(,) up to Po-almost-sure equality.

Exploiting disintegrations, we give a definition of conditional independence that is a transparent generalisation of
the elementary probabilistic definition of unconditional independence.
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Definition 8.7 (Conditional independence). For random variables X : Q — A, Y: Q — Band Z : Q — C, we say that
X and Y are conditionally independent given Z (notation X 1. Y | Z) if, for every S € B4 and T € Bg, and for Pz-almost
allz € C,

P71 (XTHS) NYTHT)) = Pzea() (XTHS))  Pzoaz) (YH(T))

Our goal in this section is to recover the three principal relations between random variables (almost-sure equality,
equidistribution and conditional independence) as the relations of equality, atomic equivalence and atomic conditional
independence in a suitable atomic sheaf topos. In order to be able to construct sheaves of random variables, the category

over which sheaves will be taken is a category of sample spaces. In fact we consider two such categories.

Definition 8.8 (The categories SBP and SBP(). We write SBP for a small category of standard Borel probability
spaces, that contains every such space up to isomorphism. We write SBP for the quotient category, with the same

objects, in which morphisms are equivalence classes [p] of maps modulo almost-sure equality =5 .

It is an interesting fact that one can take the category of atomic sheaves over either category, SBP or SBP, and in
doing so one obtains equivalent categories of sheaves. Sheaves for the atomic topology on SBP were introduced in [37]
as probability sheaves. In the present paper, it will be convenient to instead take atomic sheaves over SBPy. Since the
two categories of sheaves are equivalent, we shall continue to use the name probability sheaves. The equivalence of the
two categories will be shown in a separate paper.

An important advantage of working with SBP is the property below, which fails for SBP.
PROPOSITION 8.9. Every morphism in SBPy is an epimorphism.

Proor. We first observe that every map g : Q — Q' in SBP is almost surjective in the sense that, for any S € Bg
with Pg(S) = 1, there exists T C ¢(S) such that T € Bq/ and P/ (T) = 1. This holds because the image q(S) is an
analytic subset of Q’ with outer measure 1. Since all analytic sets are measurable with respect to the completion of the
Borel measure Pgy, the image q(S) also has inner measure 1, meaning that there exists T € q(Q) with the required
properties.

To prove that every morphism in SBPy is epimorphic, suppose we have [¢q] : Q@ — Q’ and [r], [r'] : Q" — Q" such
that [r] o [q] = [r'] o [q];ie,roq =as ' oq.LetS C Q be Borel such that Po(S) = 1 and (roq) I's= (r’ oq) |'s. By the
almost surjectivity of g, let T C q(S) be such that T € Bq and Po/(T) = 1. Then r [7=r’ [1; 1€, 1 =a5 r’. Equivalently

[r] = [r'] as required. O

PROPOSITION 8.10. The category SBPg has pairings.

Proor. Given any span Qy & Qx ﬂ Qz in SBPy, its pairing is given by (Q, [(p, q)], 71, 72), where Q =

(Qy X Qz, Bayxqy: P(pg)) » using the product standard Borel space and the probability distribution of the paired

random variables p and q. The properties of a pairing are easily verified, using Proposition 8.9 for uniqueness. O

Definition 8.11 (Independent square in SBPy). Define a commuting square in SBPy

ax 2L o,

[q]J lm (37)

QZE’QW

to be independent if p 1L g | r o p, using conditional independence of random variables (Definition 8.7).
Manuscript submitted to ACM



1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

1716

Equivalence and Conditional Independence in Atomic Sheaf Logic 33

PRrOPOSITION 8.12. Definition 8.11 endows SBP with independent pullback structure satisfying the descent property.

The proof of Proposition 8.12, which is intricate, can be found in Appendix C. In the present section, we content
ourselves with exhibiting the construction needed to complete any cospan Qy m—> Qu <—[S—] Qz to an independent
pullback. Using the disintegrations for r and s, we endow the standard Borel product (Qy x Qz, Bq, x0,) with the

probability measure P defined as:
U [ (Brsgo ® o) V) dPay (), (39)
where Pp.-1(,,) ® Pg-1(,,) is the product probability measure. Then
(Qy X Qz, Bayxa,,P)

together with the two projections, which are measure preserving, gives the required independent pullback. We write

the resulting independent pullback square as

Qy ®q,, Qz ] Qy

lszl Jlrl

Qz—[S]>QW

In combination, Propositions 8.9, 8.10 and 8.12 show that the category SBP has the requisite structure (Definition 7.8).
We next define the anticipated sheaves of random variables, first by defining them as presheaves, and then subse-

quently verifying the atomic sheaf property.

Definition 8.13 (Presheaf of random variables RV(A)). Let A be a standard Borel space. Define a presheaf RV(A) €
Psh(SBPy) of A=valued random variables (modulo =, 5 ) by:

e RV(A)(Q) := equivalence classes of random variables X : Q — A modulo =;..
e For [X] € RV(A)(Q) and [¢]: Q' — Q, define [X] - [q] := [X o q].

We remark that a similar definition can be used to define a presheaf of A-valued random variables modulo =, 5. over the
base category SBP. In the case that SBP is used as the base category, one can also define an alternative presheaf of
random variables, in which random variables are not quotiented modulo =, 5, an option which is not available when
SBP is used as the base category. The SBP -presheaf of unquotiented A-valued random variables is not, however, an
atomic sheaf. In contrast, irrespective of the choice of base category, SBP or SBPy, the presheaf of random variables

modulo =, 5. does form a sheaf. We prove this in the case of our chosen base category, SBPy.
PROPOSITION 8.14. For any standard Borel space A, it holds that RV(A) is an atomic sheaf.

Proor. Suppose [Y] € RV(A)(Q’) is [g]-invariant where Q’ 4 q is a map in SBPy. Consider the independent
pullback square

o @a0 P o

[p2] l J lq]

QL —Q

By [g]-invariance, [Y] - [p1] = [Y] - [p2],ie., Y o p1 =as. Y o py. That is, the measure of

U = {(0],03) € Q' xQ" | Y(w1) = Y(w2)}
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in Q' ®q Q' is 1. Equivalently, using (38),

/(qul(w) ®Pq’1(w))(U) dPo(w) = 1.

So, for Pg-almost all w € Q, we have
(Pq’l(a)) ®Pq’1(a)))(U) =1.

For any such w, by the definition of product measure,

//1U(w{,o)§)qu-l(w)(w{)quq(w)(wé) =1 ,

where 1y is the indicator function for the set U. So for Pg-1(,,)-almost all ©] and Pg-1,,)-almost all wj, we have
(0], @5) € U, ie, Y(w]) = Y(w}). By arguing using the decomposability property of Pg-1(,,) discussed beneath
Definition 8.2, it follows there exists a Borel subset C,, € Q' with qul (@) (Cw) = 1 such that Y is constant on C,. By
the first property of disintegrations, Pg1(w) (¢~ Y(w)) = 1. Defining D,, := C,, N g~ (w), it holds that Pg-1(0) (Dy) =1,
the function g has constant value w on D,,, and Y is also constant on D,,. Let d,, be the constant value of Y on D,,.
Note that we have obtained such d,, and D,,, for Pg-almost-all w.

Next we show that there exists a measurable function X : Q — A such that X (w) = d,,, for Pg-almost all w. We first
show this in the special case that A C R is a closed bounded interval, so all A-valued random variables are integrable

with their integrals taking values in A. Using integrability, we define

X(w) = / Y(w') dPg1(4) (o) . (39)
For Pg-almost all w, we have
/ Y(w) dPg-1(4) (0") = dy (40)
because Y(w’) = dy, for Pg-1(,,)-almost all @” € D,. So we indeed have the required measurable function X in the
case of a closed bounded interval A. In the case of an arbitrary standard Borel space A, one takes some measurable
embedding of A into [0, 1] (see the discussion after Definition 8.1), and then the definition of X given above can be used
to obtain a measurable function Q — [0, 1] that lands with probability 1 in the image of the embedding of A in [0, 1],
meaning that it restricts (modulo redefining it on a null set) to the required map X : Q — A.
We next verify that X o g =, 5. Y : Q” — A. Consider the Borel set E := {0’ € Q' | X(q(0”)) = Y(w’)}. We claim
that, for Pg-almost-every w, it holds that D,, C E. Indeed, for Pg-almost-all o, we have that »’ € D,, implies both
q(@’) = w and Y(w’) = d,, hence X(q(w)) = Y(«’) follows, i.e., " € E. Because D,, C E, we have

Pq—l(w) (E) = Pq—l(w) (Dy) =1 .
By the definition of disintegrations,
Po/ (E) = / Pg1(e) (E) dPo(w) = / 1dPgo(w) =1 .
Soindeed X 0 g =55 Y : Q" — A. Thatis, [X] - [q] = [Y]. So [X] is a [g]-descendent of [Y].
That [X] is the unique [q]-descendent of [ Y] holds because q is almost surjective, as in the proof of Proposition 8.9. 0O

COROLLARY 8.15. For any SBPS Q the representable presheaf yQ is an atomic sheaf,.

Proor. For any SBPS Q’, we have that (yQ)(Q’) € RV(Q)(Q’); indeed it is the subset of measure-preserving
functions. It is then easily verified using Proposition 4.3 that yQ is a subsheaf of RV(Q). In particular, yQ is a sheaf. O
Manuscript submitted to ACM
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We end this section by showing as promised that the three atomic forms of atomic formula of our general atomic
sheaf logic are, in the case that sorts are interpreted as sheaves of random variables, correctly interpreted as the
expected probabilistic relations between random variables. Firstly, that equality in the logic corresponds to almost
sure equality of random variables is immediate from the definition of the sheaf RV(A), in which random variables are
explicitly identified modulo =, 5 . Secondly, Proposition 8.16 below shows that atomic equivalence is interpreded as the

T . . d
equidistribution relation =.

PROPOSITION 8.16. For any SBS A, the atomic equivalence subsheaf ~gy(a) € RV(A)XRV(A) from Theorem 5.1 satisfies:

~rv(4) () = {([X], [X]) € (RV(A) X RV(A))(Q) | X Lxy .

Proor. Consider any [X], [X"] € RV(A)(Q).

Suppose we have [u], [u']: Q" — Q with [X] - [u] = [X'] - [&], i.e., X ou =55 X’ ou. Then (X o u).(Pgy) =
(X’ ou")«(Pgy). Whence

Xi(Pa) = Xu(u«(Poy)) = X{(u;(Por)) = X{(Pq) ,
which shows X £ X.

Conversely, suppose X d X’ ie, Xi(Pg) = X/(Pq). We write Q4 for the SBP space given by A together with
the probability measure Pg := X, (Pgq). With this probability measure, the functions X: Q —» Q4 and X": Q —» Qyu
are morphisms in SBP. By coconfluence, there exist p,q: Q' — Q such that X o p =5 X’ o ¢, which implies
[X] - [p] = [X'] - [g]. So indeed ([X], [X"]) € ~Rry(a)(Q). o

The remaining form of atomic formula in our logic is conditional independence. Proposition 8.18 below shows
that atomic conditional independence is indeed interpreted as the probabilistic relation of conditional independence
(Definition 8.7). Before this, in order to be able to make sense of the relation of atomic conditional independence, we

need to verify that the sheaves RV(A) have supports (Definition 7.1).
PROPOSITION 8.17. For any standard Borel space A, it holds that RV(A) has supports.

Proor. Consider any [X] € RV(A)(Q). Define a standard Borel probability space by
Qx := A with probability measure Po, = Xi(Pq).

It is easily checked that (Qy, [X], [x — x]) is a support for [X], using the almost surjectivity of [X] : Q — Qx, as in
the proof of Proposition 8.9, for uniqueness. O

ProposITION 8.18. For any SBSs A, B, C, the atomic conditional independence subsheaf

LRrv(a)Rv(B)IRV(C) € RV(A)XRV(B)xRV(C)
from Theorem 7.10 satisfies:
Arv(a)rv(B)|Rv(C)(Q) = {(IX].[Y].[Z]) € (RV(A)XRV(B)XRV(C))(Q) | X LY |Z} .
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36 Alex Simpson
Proor. Suppose [X] € RV(A)(Q), [Y] € RV(B)(Q) and [Z] € RV(C)(Q) are such that X 1L Y | Z according to
Definition 8.7. Define
Qx := A x C with probability measure Pq,, = (X, Z)+(Pq)
Qy := B x C with probability measure Pq, := (Y, Z)«(Pq)
Qz = C with probability measure Pq, = Z.(Pq) .

Then the hybrid diagram below, shows that the triple ([X], [Y], [Z]) belongs to the atomic conditional independence

relation L py(4)rv(B)|RV(C) ()

o (D)1 o L2 a] pua) s jy(C)
[(Y,zn\ oL an
QY —71_2> QZ T
[z-2]
l(y,Z)H(y,Z)Jl \
RV(B) x RV(C) - RV(C)
2

In this diagram, (Qz, [Z], [z > z]) is support for [Z], by the definition of Q, and the top-left square is independent,
because (X, Z) 1.(Y, Z) | Z holds, which follows from X 1L Y| Z.

Conversely, suppose ([X], [Y], [Z]) € Lrv(a)rv(B)[RV(C)(L). Defining Qx, Qy and Q7 as above, we have that
(Qx, [(X,2)], [(x,2) = (x,2)]) is support for [(X,Z)] and (Qy, [(Y,2)], [(y.2) = (y,2)]) is support for [(Y,Z)]
(Qz, [Z], [z ¥ z]) is support for [Z]. So, by Lemma 7.9, these supports fit into the hybrid diagram above. Since the
top-left square is independent, we have (X, Z) 1 (Y,Z) | Z. From this, X 1L Y | Z follows, as required. O

9 The Schanuel topos

We give a very condensed outline, without proofs, of one more example in which we have an atomic sheaf logic of
equivalence and conditional independence: the Schanuel topos, which is equivalent to the category of nominal sets of
Gabbay and Pitts [14, 35].

Let | be (a small version of) the category whose objects are finite sets and whose morphisms are injective functions.
We consider the topos of atomic sheaves over the category I1°P. Since all maps in | are obviously monomorphic, all maps

in 1°P are epimorphic.

PROPOSITION 9.1. The category I°P carries independent pullback structure satisfying the descent property. and it has

pairings.

DESCRIPTION OF STRUCTURE. Define a commuting square in I°P to be independent if the associated square (with
opposite orientation) of functions in | is a pullback in | (or equivalently in Set). A commuting square in I°P is then an
independent pullback if and only if the associated square of functions in | is a pushout in Set (but not necessarily in
1). Every cospan in 1°P completes to an independent pullback by taking the pushout in Set of the associated span of

functions in |. O

PROPOSITION 9.2. The category |°P has pairings.
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DESCRIPTION OF STRUCTURE. A span in I°P gives rise to a cospan of functions in I. The pairing in I°P is given by the

pushout in Set of the pullback in | (or Set) of this cospan of functions. O

A presheaf P € Psh(I°P) is just a covariant functor P: | — Set. The description of independent squares above, means
that Theorem 6.6, in the case of C = |°P, specialises to the well-known characterisation that a presheaf P € Psh(I°P) is
an atomic sheaf if and only if the covariant functor P: | — Set preserves pullbacks (see, e.g., [23, A 2.1.11(h)]). This
property enables the result below to be established by constructing supports in 1°P as a multiple pullbacks in | over all

representable factorisations, of which there are only finitely many.
PROPOSITION 9.3. Every atomic sheaf in Shat (1°P) has supports.

For a sheaf A in Shy(1°P), the support of an element x € A(X) corresponds to a smallest subset supp(x) € X for
which there exists y € A(supp(x)) such that x =y - i, where i : X — supp(x) in I°P is given by the inclusion function
supp(x) — X. Proposition 9.3 is well known. For example, it plays a key role in Fiore’s presentation of Shat(1°P) as
a Kleisli category [13, 30]. An analogous property is also prominent in presentations of the equivalent category of

nominal sets [14, 35].
PROPOSITION 9.4. For any A in Shyt(1°P), the atomic equivalence subsheaf ~4 C AXA from Theorem 5.1 satisfies:
~a 00 = {(xy) € (AXAHX) | IX S X. y=x-i} .
PROPOSITION 9.5. For any A, B, C in Shat (1°P), the atomic conditional independence subsheaf
Lapic < AXBXC
from Theorem 7.10 satisfies:

Lapic(X) = {(x,y,2) € (AXBxC)(X) | supp(x) Nsupp(y) € supp(z) } .

10 Discussion and related work
10.1 Relationship with (multi)team semantics

Our main running example throughout the paper has been the category of atomic sheaves over the category Sur, in
which the interpretations of atomic equivalence and conditional independence, when applied to the sheaves NV(A) of
nondeterministic variables, coincide with the multiteam interpretations of those relations from the (in)dependence logics
of [11, 17, 42]. For our logic, we use the canonical internal logic of an atomic sheaf topos, whose semantics is provided
by the forcing relation of Figure 2, and whose underlying logic is ordinary classical logic.

In our route to atomic sheaf logic in Sections 2-4, the use of multiteams seems essential. Indeed, it is the presentation
of multiteams as finite-fibred functions in Section 2 that forms the basis for the connection with the category Sur,
whence with atomic sheaves. This contrasts with the majority of work on (in)dependence logic, from [17, 42] onwards,
which is largely based on teams rather than on multiteams. It is accordingly worth observing, that it is possible to
reformulate the atomic sheaf logic of Figure 2 directly in terms of teams. To see this, note that any finite team trivially
gives rise to a canonical finite multiteam, in which every assignment has multiplicity 1. Conversely, the support of any
finite multiteam is a team. Under the correspondence between V-multiteams, and “V-assignments of nondeterministic
variables, discussed in Section 2, we can reformulate these two statements in the following way. Every finite V-team
givesrise to p: V — (Q — A) enjoying the team property: for all v, 0’ € Q, ifB(x)(a)) = ES(X)(w’), for all x € V, then
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® = . Moreover, for every V-multiteam p’: V — (Q’ — A) there exists a unique up to isomorphism g : Q" — Q
and p: V — (Q — A) such that p satisfies the team property and p’ = p - g. It thus follows from the sheaf property
of fo;cing (Proposition 4.8) that t}:e behaviour of the relation Q I pgin ghat(Su r), for any formula ®, is determined
entirely by its behaviour on teams p. Moreover, it is easy to unwind the clauses in Figure 2 and to reformulate them
directly in terms of ordinary teams_qua sets of assignments. Thus atomic sheaf logic over Sur could equivalently be
presented in terms of teams rather than multiteams.

If one carries out such a reformulation in the case of conjunction and of the existential quantifier, one obtains the
standard team interpretation of the former [42], and the lax interpretation of the latter, which is often the preferred
team interpretation [17, 18]. The clauses for the other connectives and for the universal quantifier are different however.
Whereas the clauses in Figure 2 validate the laws of classical logic, it is well known that the standard team semantics of
the other connectives and the universal quantifier leads to some logically exotic behaviour. For example, disjunction is
not an idempotent operation. Abramsky and Véaanénen [1] provide an illuminating explanation for such behaviour,
by showing that the dependence logic connectives and quantifiers can be naturally understood as fitting into the
framework of Pym and O’Hearn’s logic of bunched implications (BI) [32, 36]. We now review this perspective and then
discuss how it might be adapted to atomic sheaf logic.

The approach of [1] is based on Lawvere’s notion of hyperdoctrine [26, 34]. Recall that the contravariant poswerset
functor P on sets, can be viewed as a functor P: Set®? — Pos, where Pos is the category of partially ordered sets and
monotone functions. Specifically, P maps any set X to its set of subsets partially ordered set ordered by subset inclusion.
The functor P: Set°® — Pos is then a hyperdoctrine. Propositional logic for propositions over a set X is modelled by
the boolean algebra structure on P(X). For any function f: X — Y, the reindexing function P(f) := f=1: P(Y) — P(X)
preserves the boolean algebra structure. The quantifiers 3 : P(X X Y) — P(X) and V : P(X X Y) — P(X), quantifying
over a set Y, are modelled as left and right adjoints respectively to the monotone function (considered qua functor)
711_1 :P(X) = P(X xY), where 71: X XY — X is the projection map.

The main construction in [1], adapts the above hyperdoctrine for classical logic to team semantics, by composing
P: Set°? — Pos with the functor £: Pos — Pos given by the operation £ that maps any partial order B to its lattice
L(B) of down-closed sets. The composite functor LP: Set°® — Pos then has the following properties. For every set X,
the fibre poset LP(X) is, in a canonical way, a Bl algebra, that is an algebraic model of the logic of bunched implications
BI [32, 36]. In the case X = A", the elements of LP(A") are precisely down-closed (in the subset ordering) sets of
A-valued teams with variable set V. Each connective of Bl is modelled algebraically as a function of appropriate arity
on LP(AY). For example, the multiplicative conjunction ®, is modelled as a certain canonically generated function
® : LP(AY) x £P(AY) —» £PA"Y). Writing ® and ¥ for elements of LP(A"Y) (which can be thought of as an

abstract set of propositions), and writing S I ® to mean S € ®, the function ® can be characterised by
SFOQVY © dT,U, S=TUUand T+ PandU I+ ¥.

This is exactly the semantic clause for the disjunction connective of team semantics. The exotic behaviour of the
disjunction of dependence logic is thus nicely explained as a manifestation of the expected behaviour of the mul-
tiplicative conjunction of BI, whose multiplicative connectives have a natural resource-sensitive interpretation. A
further consequence of the hyperdoctrine construction in [1] is that the embedding of dependence logic in BI enriches
the former with additional logical connectives, such as both additive (intuitionistic) and multiplicative implications.

Lastly, the hyperdoctrine formulation of dependence logic provides an elegant explanation for the team semantics
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interpretation of the quantifiers 3and V: LP(A(VW{X }) — LP(A"Y), which are characterised in the desired way [26, 34]
as respectively left and right adjoints to LP(p — pl) : £LPAY) - LP(AW&J{X}).

The above hyperdoctrine construction from [1] works for the original dependence logic [42], but not for independence
logic [17], because teams satisfying independence atoms are not down-closed in the subset order. This means that the
L functor cannot be used to interpret formulas involving independence. An alternative is to combine the contravariant
powerset functor P with the covariant powerset functor Py (with direct image as its functorial action). It turns out that if
one considers the composition in the order PP,: Set®® — Pos, then the left and right adjoints to the monotone function
PPi(p — plg) : PP (AY) > PP (A(VW{x}) correspond respectively to the existential and universal quantifier with
(the team version of) the forcing clauses from Figure 2. Further, the boolean algebra structure on PPy (AY) corresponds
to (the team version of) the forcing clauses for the propositional connectives in Figure 2, and this structure is preserved
by all reindexing maps PP,(f). The hyperdoctrine PP;: Set®? — Pos thus recovers the team version of atomic sheaf
logic as in Figure 2. It would be interesting to investigate this construction in more detail, for example to explore how
independence and equivalence formulas interact with the hyperdoctrine formulation, and also the extent to which the
logic BI logic is relevant in this picture. Both points are potentially subtle. The standard hyperdoctrine desideratum
that logical structure should be preserved by reindexing maps provides a constraint on which atomic primitives are
admissible. Moreover, the relevance of BI logic is less a priori apparent than in [1], because the switch in the order of
composition (PPy has the covariant functor as the inner functor, whereas LP has its covariant functor as the outer
functor) means that the outermost functor is no longer given by a canonical Bl-algebra construction.

A different source of exotic behaviour in (in)dependence logics concerns interaction between the universal quantifier

and (in)dependence atoms. One particularly striking example is provided by the sentence below.
VXA,VyB. ML yB) (41)

According to the usual team semantics of the universal quantifier, the above sentence is valid. Nevertheless, one can
easily exhibit example teams S for which it is not the case that $ I x* 1 yB, and rightly so, because there would be little
point in independence logic if independence were a universally valid relation. We view the validity of (41) (and other
examples like it) as showing that if one is to use (in)dependence logic as a basis for reasoning about (in)dependence
properties then the associated rules of inference will have to be unusual.

Nevertheless, independence logics and their team semantics have been successfully applied in the direction of
reasoning about dependence and conditional independence. For example, Hannula and Kontinen axiomatise the valid
implications involving inclusion and embedded multivalued dependencies in database theory in terms of inclusion and
conditional independence formulas with their team semantics [18]. An interesting observation about this work is
that it takes place in the fragment of independence logic comprising conjunction and (lax) existential quantification
as the only logical operators. Since these are exactly the logical operators for which the semantic interpretations in
independence logic and atomic sheaf logic coincide, the same development can be imported verbatim into atomic sheaf
logic in Shat (Sur) extended with the inclusion relation (which indeed defines a subsheaf of NV(A) x NV(A)). One
advantage of such a reformulation is that the axiomatised rules of inference in [18] can be expressed as individual
formulas, using the general implication connective of atomic sheaf logic, rather than left as entailments. For example,
the rule of inclusion introduction, which concerns the inclusion relation, has an obvious (derivable) analogue for the
equivalence (equiextension) relation, namely: if one has already derived an equivalence formula X ~ x’ then one can
infer the formula Jy’A. (X,y" ~ X/, y’A). In atomic sheaf semantics, this rule can be formulated as an implication.
Indeed, it is none other than the transfer principle (16) from Figure 3, valid in any atomic sheaf topos. The same transfer
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principle can also be found in mainstream probability theory. The interpretation of (16) in the category Sh,:(SBPg) of
probability sheaves is very close to the transfer theorem of [24, Theorem 5.10], and arguably captures the essence of
that theorem in logical form.

The interpretation of atomic sheaf logic in Sh,t (SBPy) also connects with a body of work on adapting team semantics
to probability-based scenarios. For example, an A-valued measure team in [21] is a measurable map Q — (V — A),
for some probability space Q and set of variables V. This can equivalently be presented as a map V — (Q — A),
which is almost the same thing as a variable assignment in atomic sheaf logic over SBP, i.e., a mapping from variables
to elements of RV(A)(Q). There are however two key differences: random variables in RV(A) are identified up to
almost sure equality, and objects in SBPy are restricted to probability spaces Q that are standard Borel. Although
these differences may seem minor, they are crucial to the interpretation of atomic sheaf logic in Shat(SBPg). For
example, it is because of the restriction to standard Borel spaces that the category Sh,:(SBPy) is coconfluent. The
failure of coconfluence for general probability spaces makes it difficult to extend the measure-team semantics of atomic
formulas in [21] to include the logical connectives and atoms of independence logic. In the literature, such extensions
have been given only for probabilistic teams based on discrete probability [12]. It is worth remarking that discrete
probability fits in equally well with the approach of the present paper. One can consider atomic sheaves over the
category of finite probability spaces, or alternatively over the category of countable probability spaces, both of which
are full subcategories of SBPy. Such examples further substantiate our thesis that atomic sheaf categories provide a
unifying framework configurable to diverse settings for conditional independence. It would be interesting to compare
our approach with the semiring-based framework of [4], which provides a different unifying approach to varieties of

team semantics, which encompasses both ordinary teams and discrete probabilistic teams.

10.2 Computer science applications

In this section we outline possible computer science applications for atomic sheaf logic. Rather than trying to be
comprehensive, we instead focus on a few illustrative examples, beginning with reasoning about probabilistic programs.

An almost surely terminating imperative probabilistic program C can be modelled as a probabilistic map between
states, that is a function [C]g : State — D(State), where D (State) is the set of probability distributions over states.
Alternatively, but equivalently, it can be viewed as a transformation [C] : D(State) — D(State) mapping a probability
distribution on initial states to the induced probability distribution on final states [25]. There is also a third related
possibility. One can view the program as a transformation [C]g mapping an initial random state ¥ : QO — State, for
some sample space Q, to a final random state T [22]. However, because the program C may make use of randomness
not present in Q, the sample space for T has to be, in general, an extension of Q, meaning that T : Q’ — State for
some suitable sample space Q' equipped with a probability preserving map q : Q' — Q. While the idea of modelling
programs as random-state transformers is very natural, some careful bookkeeping is required to deal with the change
of sample space. Such bookkeeping can be avoided entirely if one uses the alternative approach of defining the random-
state-transformer semantics in the atomic sheaf logic of Shyt(SBPy). Under this approach [C]g is formulated as a
relation [C]gr € RV(State) x RV(State) satisfying: for any random initial state 3 on which C terminates, there exists a
random final state T such that S[C]gT and, for any random state T’, it holds that S[C]gT’ implies 3, T ~ 3, T". The
key point here is that no sample spaces need to be specified, because, from the viewpoint of atomic sheaf logic, sample
spaces are implicit, and the extension of sample spaces is likewise taken care of implicitly by the semantics of the
existential quantifier. Not only is such an implicit-sample-space style of manipulating random variables intuitive, it

also avoids the bookkeeping required when dealing with explicit sample space extensions. For example, in [22], a
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property called relative tightness is identified as useful property of probabilistic Hoare-triple-like specifications. Such a
specification {®}C{¥} asserts that, if the precondition ® holds for a random initial state ¥, and if C terminates from
%, then the postcondition ¥ holds for the induced random final state T. The property of relative tightness asserts
that the probabilistic behaviour of the random state T on the variables FV(¥) relevant to determining the truth of ¥,
depends only on the value of the initial state ¥ on FV(®). This can be formulated in a simple way as the statement

about conditional independence on the left below

Trver) L2 | Zrv(o) Tev(w) L2 0 q | Zpv(e) 09,

where Yy (y) and Try(y) denote the initial and final random states restricted to the specified variable sets. For contrast,
we include on the right above the statement of relative tightness that appears in [22], which shows the need for
bookkeeping (in this case, composition with g) when the standard mathematical formulation of random variables with
explicit sample spaces is used. For a more involved example of the efficiency afforded by the implicit-sample-space
approach of atomic sheaf logic, we consider how the while statement on the left below is approximated by iterating the

conditional statement on the right.
while Bdo C if B then C else skip

Working within atomic sheaf logic, suppose the while statement terminates in random final state T from a random
initial state 3. Then defining 39 = ¥ and letting 3,11 be such that 3,[C]grZn+1, we obtain a sequence (Z,)n>0 of
random states that converges almost surely to the random state T. The resulting convergence property £, — T is used
in ongoing work extending [22] to prove the correctness of a partial correctness rule for while loops in a probabilistic
program logic. The formulation of the same convergence statement with explicit sample states is unwieldy as it involves
a sequence Qg 2 Q4 2 Q) ... of sample space extensions for the random states (2,),, as well as a cone (in the
category-theoretic sense) (Qp, BRYeY )n for the sequence, where Q' is the sample space for T. With this scaffolding in
place, the convergence property can be stated as X, or, — T.

We have outlined above how atomic sheaf logic might be applied to formulate a random-state-based operational
semantics for imperative probabilistic programs. Another potential application is to the assertion logics of Hoare-like
program logics for probabilistic programs, in particular to probabilistic separation logic (PSL). PSL was first introduced
in [5] as an approach to verifying probabilistic programs using a version of the separating conjunction of separation
logic [31, 43] to reason about probabilistic independence. The modular style of reasoning is supported by a version of
the frame rule of separation logic, which, in the case of probabilistic separation logic, allows certain statements about
probabilistic independence to be inferred. The paper [5] presents several applications to the verification of cryptographic
protocols. Subsequent work has extended the approach to reason about negative dependencies [3], adapted it to a
probabilistic functional language [27] and incorporated conditional independence [2, 27]. In all the aforementioned
works, the assertion logic has been given as an instance of the logic of bunched implications (BI) with a Kripke-style
semantics defined over a partially ordered resource monoid [36]. This leads to an intuitionistic but not classical assertion
logic. It seems likely that one can obtain a classical assertion logic, by replacing the Kripke-style semantics of Bl in a

partially ordered resource monoid with a category-based semantics utilising the forcing clauses of atomic sheaf logic.

3one version of such a classical assertion logic appears in [22]. However, the very simple setting of abstract semantic asserions with no explicit quantifiers

in op. cit., enables the category-theoretic genesis of the logic to be hidden. Its one remaining trace is the set of footprint variables, which corresponds to
the notion of support in the present paper.
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Another connection with the logic of bunched implications comes from a fact that we have not developed in the
present paper: every category C with independent pullbacks and terminal object is symmetric monoidal, and its category
Shat(C) of atomic sheaves carries, in addition to its cartesian closed structure, a second symmetric monoidal closed
structure ®gy, derived, using the methods of [9], from the modoidal structure of C. Categories with two such closed
structures are category-theoretic models of BI [32]. In the case of Sh,t(C), the monoidal structure is furthermore affine,
hence it has projections A <— A ®s, B— B. In the case that A and B have supports, then the projections are jointly
monic and the resulting monomorphism

A®sh B> AXB

is in fact isomorphic to L4 g C A X B given by the unconditional version of (20) (i.e., in which C is a terminal object).
That is, the unconditional independence relation of the present paper is recovered as an instance of monoidal structure.
This connection will be elaborated in a follow-up paper, where also the relationship with the monoidal category setting
of [38] will be discussed. Indeed the notion of local independence structure with local independent products in op. cit. is
equivalent to the independent pullback structure of Section 6, but with a much more involved axiomatisation in terms
of fibred monoidal structure. The monoidal structure of C provides another connection between the work of the present
paper and varieties of separation logic including probabilistic separation logic, as elaborated by Li et. al. [28]. In their
work, the Day monoidal product on presheaves [9] is used to model the separation of state into independent segments,
whose probabilistic independence can be superimposed using a probability monad. As in our work, the notion of sheaf
with supports, which was introduced independently in [28], plays a crucial role.

The category Nom of nominal sets of Gabbay and Pitts [14, 35] has found applications to reasoning about names in
computer science. The monograph [35] presents many examples of such applications, together with pointers to the
literature. One prominent application area is reasoning about abstract syntax for languages involving operators that
bind variables.

As mentioned in Section 9, the category Nom is equivalent to the Schanuel topos, and so the relations of equivalence
and conditional independence defined in Section 9 can be transferred to Nom. In Nom, the atomic equivalence relation
of Proposition 9.4 is the equivalence relation of being in the same orbit. The special case of Proposition 9.5 corresponding
to the relation of unconditional independence x I y is the relation of separatedness (supp(x) N supp(y) = 0), which is a
central relation of interest in the literature on nominal sets. The full conditional independence relation x 1L y | z is then
a relative notion of separatedness (supp(x) N supp(y) C supp(z)), which first appeared in [38]. We believe that the
atomic logic of equivalence and conditional independence developed in the present paper may, when transported to
Nom, provide a convenient setting for reasoning about syntax with variable binding. Let us illustrate this using the
untyped A-calculus as an example.

There are several approaches to reasoning about syntax with variable binding. The first is to reason about raw terms,
in which, for example, Ax. x is distinguished from Ay. y because the variable name differs. This leads to an awkward
definition of substitution M[x := N| that involves a non-canonical choice of bound-variable renaming, and does not
provide a good foundation on which to base structured reasoning principles. Some abitrariness can be avoided by
imposing canonicity on bound-variables names, for example using de Bruijn indices. However, syntactic manipulations
then involve arithmetic operations on indices, which means that proofs of syntactic properties are entangled with
arithmetic proofs that are an artefact of the choice of representation and have no intrinsic connection to the syntactic
properties being proved. An alternative, favoured in many informal expositions of syntax, is to work with equivalence

classes of terms modulo a-equivalence instead of raw terms. This leads to a canonical definition of substitution, but
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has two drawbacks that are particularly significant if one wishes to formalise proofs. The first drawback is that all
term manipulations need to be proved compatible with the equivalence relation. Such proofs are often omitted from
informal expositions, but of course need to be given in a formal setting. The second drawback is that one loses the
structural-induction principle on terms that is derived from the inductive definition of raw terms.. These two issues can
be given a very elegant solution by defining syntax in the category of nominal sets. There is a functor called name
abstraction that can be used to give a direct inductive definition of the nominal set of terms modulo a-equivalence. This
definition comes with an associated principle of structural induction for reasoning about terms modulo a-equivalence,
and a principle of structural recursion that allows one to define functions that are automatically well-defined on
a-equivalence classes. This approach is more fully described in the monograph [35], which also contains pointers to the
wider literature. It seems fair to say, however, that this approach does not solve all the practical difficulties of reasoning
about binding operators. For example, the structural induction and recursion principles can be cumbersome to work
with, due to their side conditions involving concepts such as separatedness and freshness.

We propose here an alternative approach to reasoning about syntax with binding operators in the category of
nominal sets. The idea is to reason directly about raw terms rather than about a-equivalence classes of terms, but to
use properties of the atomic-sheaf-logic equivalence and conditional independence relations to enable definitions and
reasoning to be carried out in an elegant structural way. To illustrate the proposal, let us consider untyped A-terms
presented in the form I' M, where I' is a finite sequence of distinct names that are treated as free variables in term M.
The rules for generating such terms are:
aeT I'tM TFN F,akMa
I'ra T+ MN T+ Aa.M

Then the T-indexed relation {=r C Termr X Termr }r of a-equivalence, where

¢r.

Termp :={T+ M |T + M is aterm},

can be defined as the smallest I'-indexed congruence relation containing atomic equivalence {~r C Termr X Termr}
(i.e., orbit equality).* Substitution T' - M[a := N| can be specified as a function defined on any pair of terms T, a M

and I' + N for which the conditional independence (i.e., relative separation property)
T,atrM L TN | T

holds, by simple structural recursion on the structure of the raw term I', a + M. Of course, one would like substitution
to be defined on all suitable terms, not just on sufficiently separated ones. This is achieved, by defining substitution as a

ternary relation Subr , C Termr , X Termr X Termr, by specifying that
Subr 4(LarM, T+N, T'+L)

holds precisely when there exists T + N’ such that TF N’ ~T+N and[{a}+ M LT+N’ | T and L = M[a := N’]. By
the independent existence principle (30), this relation is total in the sense that, for any M, N (for brevity we omit the
contexts) there exists L such that Sub(M, N, L). The relation is also single-valued up to equivalence: if Sub(M, N, L) and
Sub(M, N, L") then it holds that T'+L ~ '+ L’. Preservation of a-equivalence, then follows in the form: if M =r , M’
and N =r N’ and Sub(M, N, L) and Sub(M’, N’,L’) then L =r L’, which can be established elegantly and abstractly

using the characterisation of a-equivalence given above.

4This characterisation depends on the use of terms with explicit contexts and on the restriction to contexts in which all names are distinct.
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A high-level summary of the above outlined approach is that one reasons with raw terms, making use of atomic sheaf
logic and its equivalence and conditional independence relations to systematically subsume the necessary renaming of
bound variables as instances of general logical principles.

The fact that atomic sheaf logic applies both to nominal sets (via the equivalence with Sh,t(1°P)) and to probability
(via Shat (SBPg)) means that one can compare the two approaches to nominal syntax, the standard one in which terms
are ar-equivalence classes and the proposed one using raw terms, using an analogy with probability theory. When
terms (with explicit context) are considered as a-equivalence classes, they are, in particular, equated up to atomic
equivalence (orbit equality). In the probabilistic setting of Shyt (SBPy), atomic equivalence is equality in distribution.
So reasoning with a-equivalence classes is analogous to doing probability with probability distributions. In contrast,
our proposal to reason with raw terms and make use of the atomic equivalence and conditional independence relations
is analogous to, in probability theory, reasoning with random variables and exploiting the relations of equality in law
and conditional independence between them. Certainly, in mainstream probability theory, reasoning with random
variables is usually considered more convenient than reasoning with probability distributions. It therefore seems worth
investigating whether our proposed approach to reasoning about syntax will have similar practical advantages over the

a-equivalence-class-based approach. It is intended to carry out some case studies in this direction as future research.

10.3 Further work

We end the paper with two questions for potential further investigation on the theory side, of which the second was
suggested by one of the journal referees. The first is to obtain a completeness theorem for the logic of equivalence and
conditional independence valid in atomic toposes. The second is to investigate whether atomic sheaf logic enjoys a

similar relationship to second-order logic as that enjoyed by dependence logic [42].
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A Proof of Theorem 7.7

Recall that Theorem 7.7 states that every sheaf in Shyt(Sur) has supports. The main tool needed to prove this is
Theorem A.1 below.

THEOREM A.1. Every atomic sheaf P € Shat(SUr) maps pushouts in Sur to pullbacks in Set.

The proof of Theorem A.1 given below builds on Theorem 6.6. When I discussed this work with André Joyal, he told me
that he already knew Theorem A.1, and he kindly showed me his own proof, which is somewhat different in structure
from the argument given below.

Observe first that the category Sur has pushouts, and that these are defined as in Set. Observe also that, in any
commuting diagram in Sur of the form below, the outer kite is a pushout if and only if the right-hand square is a

pushout (because all maps in Sur are epimorphic).
L]
L]
LEMMA A.2. Suppose we have a commuting diagram as above in SUr. Let P € Psh(Sur) be a separated presheaf. Then
P maps the right-hand square to a pullback in Set if and only if it maps the outer kite to a pullback in Set.
Proor. Easy. O

ProOF OF THEOREM A.1. A relation R C Qx X Qy is said to be bitotal if:

Yox € Qx.doy € Qy, wxRowy and Yoy € Qy.Jwx € Qx, xRy .
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Let R € Qx X Qy be a bitotal relation. Then the projections Qx ~ R Qy form a span in Sur. Construct
the pushout
R —» Oy

r’\ \p (42)
M
QY —q> QZ

Forany n > 0 define R, € Qx X Qx and S, € Qx X Qx by: Ry := Rand S, = R 1o R, and Ry41 := Ro Sp. Let
rn: Ry — Qx and r),: R, — Qy be the first and second projections and similarly for sp: S, — Qx and

sp: Sp — Qx . Alternatively, we can formulate this in diagrammatic terms, taking pullbacks for both top-left squares

below,
, . /
Up —"» R ——» Qy Tpr1 = R —— Qy
un\ \r' p tmlJ Jr q
v g 7 s, p 7
Ry —2» Qy e - Qy Sp — Qe - Qy
rnl q ;idQZ an P ;idQZ
v v v v
Qx oo - Qy e - Qy Qx e - Qy e - Qy
P idQZ P idQZ

and defining the relations (sp, sp,) : Sp = Qx X Qx and (rp41, r;”l) : R, »—— Qx X Qx as the following epi-mono

factorisations in Set

us (SnsS) (rnoup, rouj,)
Un Sn Qx X Qx = U, ——— Qx X Qx
t,lf (rn ,r; ) (snotn ,r/ot; )
Tysr = Ry =0 Qx X Qy = Ty ————" Oy x Qy
We first claim that, for any n > 0, both diagrams below commute.
Sn Tn
Sp — Qx Rp — Qx
s;,\ Jp r;J lp (43)
Qx > Qz Qy - Qz

This first claim is proved by a straightforward induction on n. For example, one can use the induction hypothesis to
complete the diagrams involving Uy, and T,41 above with the dotted arrows.

Our second claim is that, for some n > 0, the right-hand square of (43) is a pullback in Set. (The same holds for
the left-hand square, but we shall not need this.) This holds because the fibres of the pushout maps p and g from (42)
are the connected components in the bipartite graph R C Qx X Qy restricted to Qx and Qy respectively, and the R,
construction approximates the path relation from below, necessarily reaching a fixed point at some finite n.

Our third claim is that every atomic sheaf P € Sh,(Sur) maps the pushout diagram (42) to a pullback in Set. For
this, let x € P(Qx) and y € P(Qy) be such that x - r = y - r’. We prove, by induction on n that x - r, = y - r}, and
x+sp = x - sy, for all n. For n = 0, we have rg = r and rj = r’ so indeed x - ro = y - . Next, assuming x - rp = y - 1y,
we show x - s, = x - s/,. For this, we have x - sp - uS = x -rp - up =y -rl-up =y-r -u, =x-r-u), =x-s,-u;
whence by separatedness x - s, = x - 5;,. Similarly, assuming x - s, = x - sp,, we show x - rp41 = y - ry . For this, we

R _ _ ’ _ ’ _ o _ ’ R .
have x - rp41 -t =X Sp tns1 =X-Sptprr =X 1t =y-r’ -t =y-r,., -t whence by separatedness

Manuscript submitted to ACM



2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495

2496

48 Alex Simpson

X - Int1 =y - 7,,,,. This completes the argument by induction. The second claim above now gives us n such that the
right-hand square of (43) is a pullback, in Set, hence an independent square in Sur. By Theorem 6.6, the square is
mapped by P to a pullback in Set. By the statement proved by induction, x - r, =y - r},. So, by the pullback property in
Set, there exists a unique z € P(Qz) such that z o p = x and z o g = y, which is what we needed to show to establish
the third claim.

We now establish the property asserted by the theorem. Consider any pushout diagram in Sur.

Qy — Qy
l_
QYﬁf*&

Define R C Qx X Qy to be the image (s, t)(Qy). Since s, t are surjective, R is bitotal. By the observations at the start of
this section, (42) is also a pushout. By the third claim above, P maps (42) to a pullback in Set. This property transfers to
the original pushout, by Lemma A.2. O

ProOF OF THEOREM 7.7. Given a sheaf P € Shy:(Sur) and element x € P(Qx), the support is obtained by taking
a joint pushout in Sur of all (inequivalent) representable factorisations of x, of which there are only finitely many
(because there are only finitely many partitions of Qx). By Theorem A.1, this joint pushout is itself a representable

factorisation of x. ]

B Validity of axioms (28) and (29) from Figure 4

The lemma below establishes the validity of axiom (28).
Lemma B.1. Suppose (x, (y,2), w) € L g pxc|p(X) then (x,y,(z,w)) € L p|cxp(X)-

Proor. If (x, (y,2), w) € L4 Bxc|p(X) then we have a hybrid diagram

X —2 %0, % axp
Xyzw_s’Xw T
(y',2',0") l \\\\\7‘\\\\‘
w
BxCxD D
L XL XD ”z D

where x’ - p =sandy’ -q=yand z’ - ¢ = z and (Xy, r o p, w’) is support for w and, without loss of generality,

(Xxw, p» (x,u")) is support for (x, z) and (Xyzw, g, (y’,2’,0")) is support for (y, z, w).
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The independent square in the diagram above can be factorised as a composite of two commuting squares as in the

top row below

}j/ }jn

X — Xazw — Xxw

|l

Xyzw " Xzw v Xw (44)

’,

T

Xzw -5 Xzw - Xw
where all objects are defined as the supports indicated by their names. For example, (X;, 5" © g, (2", w’’)) is support
for (z,w) and (Xxzw, p’, (x" - p”', 2”7 - t,u’ - p’’)) is support for (x,z, w). We show that the top-right square is an
independent pullback.
To see it is independent, observe that the full composite square (44) above is a composite of an independent top-row

rectangle with the two independent squares in the bottom row. So (44) is independent. That is, the square

pop’

X — Xxw

)(zxv s )(VV

is independent. It thus follows from the descent property that the top-right square in (44) is independent.
For the independent pullback property, consider any independent pullback of r along s’

Y — Xxw

kJ |

)(Z\V s )(1V

Since the top-right square of (44) is independent, there exists j : Xxz1v — Y such thatkoj = t and joh = p”’. This gives
us a representable factorisation (Y, jop’, (x" - h, 2" -k, u’ - h)) of (x,z, w). Since (Xxzw, p’, (x"-p”, 2" -t, v - p""))
is support for (x, z, w), we obtain a map i : Y — Xy, of representable factorisations. However j is also a map of
representable factorisations in the opposite direction, so i and j are mutual inverses. Thus the top-right square in (44) is
indeed an independent pullback.

Since the top-row rectangle of (44) is independent and the top-right square an independent pullback it follows that
the top-left square is independent. Using this, we form the hybrid diagram

p (" p" 2t p")

X Xxzw AXCxD
Xyzw — Xzw 723
N
(') l
2" w")
BxCxD D
LDXLXLD T2 o4
showing that indeed (x,y, (z,w)) € Lag|cxp(X). O
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The lemma below establishes the validity of axiom (29).
Lemma B.2. Suppose (x,y, (z,w)) € Lag|cxp(X) and (x,z,w) € L4 c|p(X) then (x, (y,2), w) € L4 Bxc|p(X)-

Proor. The assumption (x,y, (z,w)) € L g g|cxp(X) gives us:

p (' ug, ul,)

Xxzw é X

| |

D

3 (45)

Xyzw s Xzw

(y',03,0,,) l \
(2, w)

BxCxD c

72,3

where x’ - p = xand ¢/ - ¢ = y and (X, r o p, (z/,w")) is support for (z, w) and, without loss of generality,
(Xxzws > (x’, uz, ul,)) is support for (x,z, w) and (Xyzw. ¢, (', 03, 0},)) is support for (y, z, w).
Similarly, the assumption (x,z, w) € L4 c|p(X) gives us:

x —2% 30, axp
rop\ A Jr’
Xzw " Xw 2 (46)
(Z,’W,)l "
W
CxD
XL ﬂ'z v

wherex”"-p’ = xandz”’-q' = zand (X,,, r’op’, w'’) is support for w and, without loss of generality, (X, p’, (x”, t})))
is support for (x, w) and we can use r o p because (Xzqy, r o p, (z/,w’)) is support for (z, w).

Exploiting the support property of Xy,,, we obtain p’’ in

Z

P
X — Xazw — Xxw

| 7T

Xyzw _S’ Xzw T’ Xw

such that p”’ o p = p’. The left-hand square above is the independent square from (45). Since p”’ o p = p’, the right-hand
square is also independent, by descent along p from the independent square in (46). So the composite rectangle is

independent.

Manuscript submitted to ACM



2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651

2652

Equivalence and Conditional Independence in Atomic Sheaf Logic 51

The composite rectangle provides the independent square in

X Py X ) AxD
Xyzw §/os Xw T2
(y'oL.0,, l h
w
BxCxD
bxXC XD 7r3 D
showing that (x, (y,z), w) € L4 pxc|p(X) as required. O

C Proof of Proposition 8.12

The goal of the section is to prove Proposition 8.12, which states that Definition 8.11 endows SBP( with independent
pullback structure satisfying the descent property.

Recall that Definition 8.11 defines a commuting square (37) in SBPy to be independent if p 1L q|r o p according
to Definition 8.7. Since the square is commuting, the property in Definition 8.7 simplifies to: for every S € Bg,, and

T € Bq,, and for Pq,, -almost all ® € Qyy,
Plrop)-1(0) (0 (S) N g™ (T)) = Pri1p) (S) - Pomr () (T) (47)

The key proposition below characterises the independence of (37) as being equivalent to p, considered as a map on

fibre sets g~ ! (wz) — r~1(s(wz)), preserving the disintegration-induced probability measures, for almost all w.

ProrosiTiON C.1. A commuting square in SBPg (37) is independent if and only if, for Pq, -almost-all vz € Qy, it
holds that p (Pq'l(a)z)) = Pr‘l(s(wz)) .

ProOF. We first prove the right-to-left implication. Accordingly, suppose p«(Pg-1(4,,)) = Pr-1(5(w,)) holds for
Pq, -almost-all wz € Q. For Pq,, -almost every o € Qyy, we prove (47) by

Plrop)-1(w) (P~ (S) N g™ ()

- / Pa-1(0z) (P71 (5) N g7H(T)) APy ) (@2)

[ 11020 Py (075D @Py-1 0 @2

/ 1T(C<)Z) . Pr—l(s(wz))(s) dPs’l(w) (a)Z) because p*(qul(wZ)) = Pr’l(s(wz))

/ 1r(wz) - Pr-1(4)(S) dPg-1(,) (wz)

Ppr-1(0)(S) - / 1r(0z) dPs1(y) (0z)
= Pr1(0) (9)  Poo1() (T)

For the left-to-right implication, suppose (47) holds, for Pq,,, -almost every w € Qyy. Note that, for any S € Bq, the

function
T [ 10002) By (575D o (02)
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is a measure Bg, — [0, 1] with density

wz > Pyt (p7H(S)) .
Similarly, the function
T [ 1102) B0 () 2P, (02)
is a measure with density
@z = Pror(s(wz) 9 -

Below we prove

/1T(wZ) 'qul(wz)(P_l(S)) dPQz(wZ) = /1T(C‘)Z)'Pr’1(s(wz))(s) dPQz(wZ) 5 (48)

which establishes that the two measures are equal, and hence their densities are almost surely equal. That is, for Pq, -
almost-all wz € Qz, we have Py1(ay) CRIE Pr-i(s(wz)) (S),forall S € Bq, . Thatis, p. (Pq‘l(wz)) = Pr1(5(wy))s
as required.

It remains to prove (48). For this, we calculate
/ 17(wz) - Pr-1(5(0y)) (S) dPay (wz)
= [ [ 1102 Bt ®) P (02) dPo(@)
= [ [ 1102 P (9) Py (02) dPa(@)
= [P ® ([ 11602 @iy 02) dPato)
_ / Pret()(8) Pyt () (T) dPey()
= [ Pl (075 047D dPo () by (47
= [ [ @ S0 gD B (02) dPo ()
- / / 17(02) * Pyt () (7 (5)) APy ) (07) 4P (@)

= [ 102 By (075D P (02

For any fixed S € Bq, the function mapping any T to the left-hand side of (48) is clearly a measure B, — [0,1]. O

We now verify that independent squares in SBPy indeed satisfy the axioms for independent pullback structure.
Axioms (IP1) and (IP2) are straightforward. Axiom (IP3) is an easy consequence of Proposition C.1. For Axiom (IP5),
it is not difficult to verify that (38) indeed constructs an independent pullback square. The descent property is also
straightforward. This leaves us with (IP4), which is established in greater generality by the proposition below.
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ProrosITION C.2. In a commuting diagram in SBP as below, if both the composite rectangle (AB) and right-hand
square (B) are independent and [q], [t] are also jointly monic, then the left-hand square (A) is independent.

Qx [s] Qy (4] Qy

[P]l (A) J[q] (B) J[r]

Qo

Proor. We use Proposition C.1 to prove that (A) is independent. That is, we show that, for Po,, -almost-all vy € Qg,
and for all C € Bg,,,

Qw

Pp1(00) (570D = Pyt (o)) (€) - (49)
We show this first for C of the form t1(A) N ¢~1(B), where A € Bq,, and B € Bq,, . In this case, we have
Pyt (571t H(A) Nl g (B))
= Ppei(y) (s TN (A) Np~ T (B))
= L1(8) (@U) - Pyt (go) (s 717 1(A))
= 13(u(00)) - Pp1 (o) (s 7171 (A))
18((w0)) * Pt (o(u(wy))) (A) by Proposition C.1 for (AB)

1p(u(0v)) - Pg1 (u(wn)) (t71(A) by Proposition C.1 for (B)
= Pyt (u(wu)) (£ (A) N g (B)) .

The joint monicity of [g] and [t] means that the there is a measure 1 set S € Bq, such that the paired function
(t,q) : S > Qz X Qy is injective. Since S C Qy is Borel, the standard Borel structure on Qy restricts to S, and (¢, q) is a
measurable embedding of the standard Borel space S into the product standard Borel space Qz X Qy . Thus every Borel
subset of S is the restriction of a Borel subset of Q7 X Qy . Since the o-algebra of Borel subsets of Q7 X Qy is generated
by Borel rectangles A X B, it follows that the Borel subsets of S are generated by sets of the form S N (t 71 (A) N g~ 1(B)).
Moreover, such sets are closed under finite intersections.

The left-hand and right-hand sides of (49) define measures C — Py-1(an) (s~1(C)) and Pyt (u(wp)) respectively.
By the equality we have shown for C of the form t"1(A) N ¢ (B), these measures agree on a generating set for Bq,

(restricted to S) that is closed under finite intersections. The two measures are therefore equal. This proves (49). O
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