
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Equivalence and Conditional Independence in Atomic Sheaf Logic

ALEX SIMPSON∗, Faculty of Mathematics and Physics, University of Ljubljana

Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

We propose a semantic foundation for logics for reasoning in settings that possess a distinction between equality of variables, a coarser

equivalence of variables, and a notion of conditional independence between variables. We show that such relations can be modelled

naturally in atomic sheaf toposes. Equivalence of variables is modelled by an intrinsic relation of atomic equivalence that is possessed

by every atomic sheaf. We identify additional structure on the category generating the atomic topos (primarily, the existence of a

system of independent pullbacks) that allows the relation of conditional independence to be interpreted in the topos. We then study

the logic of equivalence and conditional independence that is induced by the internal logic of the topos. This atomic sheaf logic is a

classical logic that validates a number of fundamental reasoning principles relating equivalence and conditional independence. As

a concrete example of this abstract framework, we use the atomic topos over the category of surjections between finite nonempty

sets as our main running example. In this category, the interpretations of equivalence and conditional independence coincide with

those given by the multiteam semantics of independence logic, in which the role of equivalence is taken by the relation of mutual

inclusion. A major difference from independence logic is that, in atomic sheaf logic, the multiteam semantics of the equivalence and

conditional independence relations is embedded within a classical surrounding logic. At the end of the paper, we briefly outline two

other instances of our framework, to demonstrate its versatility. The first of these is a category of probability sheaves, in which atomic

equivalence is equality-in-distribution, and the conditional independence relation is the usual probabilistic one. Our other example is

the Schanuel topos (equivalent to nominal sets) where equivalence is orbit equality and conditional independence amounts to a relative

form of separatedness.

CCS Concepts: • Theory of computation→ Logic.

Additional Key Words and Phrases: Logics for probability, Categorical probability theory, Conditional independence, Dependence

logic, Team semantics, Sheaves, Toposes
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1 Introduction

This paper provides a study of fundamental logical principles for reasoning about relations of independence and

conditional independence together with an associated relation of equivalence. The principles, which are obtained via the

abstract mathematical framework of sheaf theory, are general, in the sense that that they apply uniformly to different
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2 Alex Simpson

instantiations of the notions of (conditional) independence and equivalence in a number of very different application

areas. The paper focuses on the mathematical development of a general theory that is intended to be cross-disciplinary

in its applicability, but with computer science as a particularly prominent source of target application areas.

Notions of independence and conditional independence arise in many scientific areas. One particularly significant area

is in probability and statistics, where it has long been recognised that conditional independence relations are subject

to subtle rules of inference [7, 40]. Such rules, in a graphical formulation, are crucial in the technology of Bayesian

networks [15, 16, 33]. In a more logical form, they have received recent interest in the area of program verification,

where, for example, versions of separation logic based on probabilistic independence have been developed [2, 5, 27].

In a different direction, the dependence and independence logics of Väänänen and Grädel [17, 42] are concerned with

purely logical notions of dependence and independence between variables. Such logics are based on team semantics,

which develops Hodges’ compositional approach [20] to the semantics of independence-friendly logic [19] into a fully

fledged semantic framework. One of the attractions of team semantics is the close relationship it enjoys with database

theory and notions of dependence and independence that arise therein [18]. There is also an intriguing aspect to team

semantics: it gives rise to logics that are exotic in character. This point is discussed in more detail in Section 10.1.

The starting point of the present paper, in Sections 2 and 3, is the observation that the interpretation given by

team semantics, more precisely by its multiteam variant [11], to conditional independence statements is equivalent to

interpreting these relations in a certain sheaf topos, namely the topos of atomic sheaves on the category Sur of finite

nonempty sets and surjections. This means that the team semantics of conditional independence automatically has

a logic canonically associated with it: the internal logic of the topos. Since the topos is atomic, this internal logic is

ordinary classical logic, albeit with a nonstandard semantics. We thus obtain a classical logic suitable for reasoning

with conditional independence relations endowed with their (multi)team semantics (Section 4).

One advantage of the atomic sheaf perspective on conditional independence is that it is very general. We axiomatise

structure, on the generating category of the topos, that gives rise to a canonical interpretation of conditional indepen-

dence relations. For this, we define, in Section 6, the notion of independent pullback structure on a category, closely

related to the conditional independence structure of [38], but with a much more compact axiomatisation. We also expose

a surprisingly rich interplay between independent pullback structure and the induced atomic sheaves. Building on this,

in Section 7, we define atomic conditional independence, generalising the multiteam conditional-independence relation

to any atomic sheaf topos over a generating category with sufficient structure

Along the route to defining conditional independence, we observe, in Section 5, that every object of an atomic topos

carries, in addition to the standard equality relation on the object, an additional intrinsic equivalence relation, which

we call atomic equivalence. Logically, this provides us with a canonical equivalence relation between variables that is, in

general, coarser than equality. In the example of the atomic topos on the category Sur, atomic equivalence turns out to

coincide with a relation of interest in team semantics, namely the equiextension relation.

One important contribution of the paper is the identification of fundamental axioms for relations of equivalence and

conditional independence that are validated by the general interpretation of these relations in atomic toposes (over

generating categories with enough structure). These axioms include the usual quantifier-free axioms from the literature

(for example, axioms formalising the reasoning principles for conditional independence from [7, 40]), but also new

first-order axioms that fully exploit the use of atomic sheaf logic. In Sections 5 and 7, we identify five such principles:

the transfer principle, the invariance principle, the principle of independent equivalence, the independent existence principle

and the property of existence preservation.
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Equivalence and Conditional Independence in Atomic Sheaf Logic 3

Throughout Sections 3–7, the abstract definitions are illustrated in the case of atomic sheaves over the category Sur,

which is our main running example, chosen because of its connection to (multi)team semantics. In Sections 8 and 9

we present two other examples of our general structure, in order to give some indication of its versatility. Section 8

presents an atomic sheaf topos over a category of probability spaces. The resulting category of probability sheaves

(first introduced in [37]) includes sheaves of random variables, over which equality coincides with the probabilistic

relation of almost sure equality, atomic equivalence coincides with the relation of equality in distribution, and the

atomic conditional independence relation coincides with the usual probabilistic relation. Section 9 very briefly indicates

how the Schanuel topos (which is equivalent to the category of nominal sets [14, 35]) fits into our framework. In this

case, atomic equivalence is the relation of orbit equality, and conditional independence amounts to a relative form of

separatedness.

Finally, in Section 10, we discuss related and potential future work, including a detailed comparison with team and

multiteam semantics in Section 10.1, and a discussion of potential computer science applications in Section 10.2.

This paper is an expanded version of a conference paper [39], presented at the thirty-ninth annual ACM/IEEE

Symposium on Logic in Computer Science (LICS), held in Tallinn, Estonia in July 2024. In comparison with the

conference paper, this journal version includes proofs of all main results, as well as an expanded discussion on sheaves

in Section 3 and also a substantially expanded presentation of our second main example, the category of probability

sheaves, which occupies Section 8. We further include three new appendices containing lengthy proofs that we prefer

not to incorporate into the main body of the paper, where they would interrupt the flow.

2 Multiteam semantics

Dependence logic [42] and independence logic [17] extend first-order logic with new logical primitives expressing notions

of dependence and independence between variables. These logics are based on the realisation that such new primitives

can be interpreted semantically, by replacing the usual assignments used to interpret variables in logical formulas with

teams (sets of assignments) or withmultiteams (multisets of assignments). The relevant definitions are as follows, where

𝐴 is an arbitrary set.

• An 𝐴-valued assignment is a functionV → 𝐴 whereV is a (without loss of generality finite) set of variables.

• An 𝐴-valued team [20, 42] is a set of assignments with common variable setV .

• An 𝐴-valued multiteam [11] is a multiset of assignments with common variable setV .

Teams and multiteams give a canonical semantics to a variety of interesting new logical relations between variables,

such as those expressing dependence = (x, y), independence x⊥ y, conditional independence x⊥z y, inclusion x ⊆ y,

equiextension x ⊲⊳ y and exclusion x|y, to give a non-exhaustive list. We review this in detail, in the case of multiteams,

focusing on two of the above relations: conditional independence and equiextension.

Amultiset of elements from a set𝐴 is a function𝑚 : 𝐴→ N, which assigns to every element 𝑎 ∈ 𝐴 amultiplicity 𝑓 (𝑎).
A multiset𝑚 is finite if its support (the set supp(𝑚) := {𝑎 | 𝑚(𝑎) > 0}) is finite. A multiset𝑚 : 𝐴→ N can alternatively

be presented by a set Ω together with a function𝑀 : Ω → 𝐴 satisfying, for all 𝑎 ∈ 𝐴, the fibre𝑀−1 (𝑎) has cardinality
𝑚(𝑎). The elements of Ω can be thought of as names for distinct element occurrences in the multiset (so each element

in 𝐴 has as many names as its multiplicity). Note also that the function 𝑀 has the support set supp(𝑚) as its image.

Of course a multiset𝑚 : 𝐴→ N has many different presentations by finite-fibre functions. However, given two such

representations𝑀 : Ω → 𝐴 and𝑀′ : Ω′ → 𝐴, there exists a bijection 𝑖 : Ω → Ω′ such that𝑀 = 𝑀′ ◦ 𝑖 . (The proof of
Manuscript submitted to ACM
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4 Alex Simpson

this statement, although simple, requires the axiom of choice.) So multisets are in one-to-one correspondence with

isomorphism classes of presentations.

In the case of a finite multiset𝑚 : 𝐴→ N, the domain set Ω of a presentation𝑀 : Ω → 𝐴 is necessarily finite, and

all functions with finite domain present finite multisets. Thus there is a one-to-one correspondence between finite

multisets and isomorphism classes of finite-domain presentations. (Moreover, because the multisets are now finite, the

axiom of choice is no longer needed.)

Since a multiteam is a multiset of assignments with a commonV . it can be presented by a finite-fibred function of

the form

𝑀 : Ω → (V → 𝐴) .

As in [11], we restrict attention to finite multiteams. Henceforth, by multiteam we mean a finite multiset of assignments

with commonV . Such finite multiteams correspond to functions𝑀 , as above, for which the set Ω is finite. Equivalently,

by transposition, a multiteam can be represented by a function of the form

𝑀 : V → (Ω → 𝐴)

While this is just a simple set-theoretic reorganisation of the notion of multiteam, it provides an illuminating alternative

perspective on multiteam semantics, which we now elaborate.

One can think of a function 𝑋 : Ω → 𝐴 as a nondeterministic variable valued in 𝐴. Here the terminology is motivated

by analogy with the notion of random variable from probability theory. In our setting, we view the set Ω as a finite

sample set, a nondeterministic version of a sample space in probability theory. The sample set represents a realm of

possible nondeterministic choices. With this terminology, a multiteam presented as 𝜌 : V → (Ω → 𝐴) is simply an

assignment of 𝐴-valued nondeterministic variables (with shared sample set) to logical variables. (In this paper, we

restrict to finite sample sets. Nevertheless, the notion of nondeterministic variable obviously generalises to arbitrary

sample sets Ω.)

We now use the above formulation of multiteams as assignments of nondeterministic variables to recast definitions

from multiteam semantics (as in [11]). Technically, this is simply a straightforward matter of translating the definitions

along the equivalence between the two formulations of multiteam. However, even if mathematically equivalent, our

formulation of multiteam encourages a different ‘local’ style of presentation, where the sample sets Ω play a role similar

to that played by possible worlds in Kripke semantics and by forcing conditions in set theory.

Before addressing semantics, we introduce our syntax. For greater generality, we work with a multi-sorted logic.

This also has the advantage that the sorting constraints on logical primitives provide useful information about their

generality in scope. Accordingly, we assume a set Sort of basic syntactic sorts A,B,C, . . . . Variables xA have explicit

sorts. We consider three forms of atomic formula.

• If xA, yA have the same sort, then xA = yA is an atomic formula.

• If xA1

1
, . . . , xA𝑛

𝑛 and yA1

1
, . . . , yA𝑛

𝑛 are two lists of variables of the same length 𝑛 ≥ 0 with identical sort lists, then

xA1

1
, . . . , xA𝑛

𝑛 ∼ yA1

1
, . . . , yA𝑛

𝑛 (1)

is an atomic formula.

• If xA1

1
, . . . , xA𝑚𝑚 and yB1

1
, . . . , yB𝑛𝑛 and zC1

1
, . . . , zC𝑙

𝑙
are three lists of variables (with𝑚,𝑛, 𝑙 ≥ 0) then

xA1

1
, . . . , xA𝑚𝑚 ⊥ yB1

1
, . . . , yB𝑛𝑛 | zC1

1
, . . . , zC𝑙

𝑙
(2)

Manuscript submitted to ACM
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Equivalence and Conditional Independence in Atomic Sheaf Logic 5

is an atomic formula.

The first formula expresses equality, as in ordinary (multi-sorted) first-order logic. The remaining two are atomic

constructs borrowed from logics associated with team semantics.

The formula ®x ∼ ®y represents what we call equivalence, which arises in the team-semantics literature as equiextension

®x ⊆ ®y ∧ ®y ⊆ ®x, sometimes written with the notation ®x ⊲⊳ ®y. Our more neutral notation and terminology reflects the fact

that we will later consider other interpretations of the ∼ relation. The use of vectors of variables on either side is needed

because equivalence is a relation that holds betwen the vectors ®x and ®y jointly, and does not reduce to a conjunction of

equivalences between components.

The formula ®x⊥ ®y | ®z represents conditional independence from the independence logic of [17], where it is written

®x⊥®z ®y. In our syntax, we take the conditioning variables out of the subscript position in order to give them more

prominence, adopting a notation that is familiar from probability theory. An important special case of conditional

independence is when the sequence ®z is empty. In such cases, we write simply ®x⊥ ®y for the resulting relation, which
expresses unconditional independence.

It is of course the atomic formulas ®x ∼ ®y and ®x⊥ ®y | ®z that give us equivalence and conditional independence in the

title of this paper.

To define the semantics, we assume we have, for every sort A, an associated set JAK. In a multi-sorted setting, an

assignment for a finite setV of variables is an element

𝜌 ∈
∏

xA∈V
J𝐴K ,

and a multiteam is a finite multiset of assignments. In the standard multiteam semantics, a formula Φ(xA1

1
, . . . , xA𝑛

𝑛 ) (i.e.,
all free variables are in {xA1

1
, . . . , xA𝑛

𝑛 }) is given a satisfaction relation

|=𝑚 Φ , (3)

where𝑚 is a multiteam of {xA1

1
, . . . , xA𝑛

𝑛 }-assignments. If instead we adopt the reformulation of multisets described

above, a multiteam is given as a single assignment

𝜌 ∈
∏

xA∈V

(
Ω → J𝐴K

)
(4)

of nondeterministic variables to logic variables, and the satisfaction relation can then be rewritten as

|=𝜌 Φ . (5)

It turns out to be helpful to make the sample set Ω, that occurs implicitly within 𝜌 , explicit in the notation, so we write

Ω ⊩𝜌 Φ . (6)

We here switch to the ‘forcing’ notation ⊩, since we shall view Ω as a ‘possible world’ or ‘condition’ (capturing all the

nondeterminism that the multiteam uses) that determines the ‘local truth’ of Φ. We stress that relations (3), (5) and (6)

all have exactly the same meaning. The only differences are in the formulation of multiset that is used, and whether or

not Ω is explicit in the notation.

Figure 1 defines the forcing relation Ω ⊩𝜌 Φ directly in terms of our reformulated multiteams, as in (4), for atomic

formulas Φ. In the clauses for equivalence and independence we use the notation 𝜌 (®x), where ®x is a vector of variables

Manuscript submitted to ACM
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6 Alex Simpson

Ω ⊩𝜌 xA=yA ⇔ 𝜌 (xA) = 𝜌 (yA) (equal functions Ω → JAK)

Ω ⊩𝜌 ®x∼®y ⇔ 𝜌 (®x) ⊲⊳ 𝜌 (®y)
Ω ⊩𝜌 ®x⊥ ®y | ®z ⇔ 𝜌 (®x) ⊥⊥ 𝜌 (®y) | 𝜌 (®z)

Fig. 1. Multiteam semantics of atomic formulas

xA1

1
, . . . , xA𝑛

𝑛 , to represent the (JA1K × · · · × JA𝑛K)-valued nondeterministic variable

𝜌 (®x) := 𝜔 ↦→ (𝜌 (xA1

1
), . . . , 𝜌 (xA𝑛

𝑛 )) : Ω → JA1K × · · · × JA𝑛K .

We also write 𝑋 ⊲⊳ 𝑌 and 𝑋 ⊥⊥𝑌 | 𝑍 for the semantic relation of equiextension and conditional independence between

nondeterministic variables, as defined below.

Definition 2.1 (Equiextension for nondeterministic variables). Two nondeterministic variables 𝑋 : Ω → 𝐴 and 𝑌 : Ω →
𝐴 are equiextensive (notation 𝑋 ⊲⊳ 𝑌 ) if they have equal images, i.e., 𝑋 (Ω) = 𝑌 (Ω).

Definition 2.2 (Conditional independence for nondeterministic variables). Let 𝑋 : Ω → 𝐴, 𝑌 : Ω → 𝐵 and 𝑍 : Ω → 𝐶

be nondeterministic variables. We say that 𝑋 and 𝑌 are conditionally independent given 𝑍 (notation 𝑋 ⊥⊥𝑌 | 𝑍 ) if, for all
𝑎 ∈ 𝐴,𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 ,

(∃𝜔 ∈ Ω. 𝑋 (𝜔)=𝑎 and 𝑍 (𝜔)=𝑐) and (∃𝜔 ∈ Ω. 𝑌 (𝜔)=𝑏 and 𝑍 (𝜔)=𝑐)

implies ∃𝜔 ∈ Ω. 𝑋 (𝜔)=𝑎 and 𝑌 (𝜔)=𝑏 and 𝑍 (𝜔)=𝑐 .

In the literature on (in)dependence logics, the semantic clauses for atomic formulas are extended with clauses giving

meaning to the logical connectives and quantifiers. A number of inequivalent ways of achieving this appear in the

literature [11, 17, 42]. All share the feature that the resulting logics are exotic. We shall discuss this in more detail in

Section 10.1.

In this paper, we consider a different approach to embedding the equivalence and conditional independence constructs,

with their multiteam semantics, in a full multi-sorted first-order logic. We observe that the multiteam semantics of the

atomic constructs lives naturally in a certain atomic sheaf topos. and then we make use of the standard internal logic of

the topos, which in the case of an atomic topos is classical logic.

3 Atomic sheaves

In this section, we define the notion of atomic sheaf topos, which is a special kind of Grothendieck topos. We restrict

attention to presenting the definitions and results we shall make use of, attempting to do so in such a way that they can

be understood from first principles given knowledge of core category theory. For further contextualisation, [29] is an

excellent source.

A presheaf on a small category C is a functor 𝑃 : Cop → Set (note the contravariance). The presheaf category Psh(C)
is the functor category SetC

op
. Given a presheaf 𝑃 , object 𝑌 of C, element 𝑦 ∈ 𝑃𝑌 and map 𝑓 : 𝑋 −→ 𝑌 in C, we write

𝑦 ·𝑃 𝑓 for the element 𝑃 (𝑓 ) (𝑦) ∈ 𝑃𝑋 , or simply 𝑦 · 𝑓 when 𝑃 is clear from the context.

Example 3.1 (Representable presheaves). For any object 𝑍 ∈ C, the representable presheaf y𝑍 := C(−, 𝑍 ) is defined by

• For any object 𝑋 ∈ C, define y𝑍 (𝑋 ) := C(𝑋,𝑍 ), i.e., the hom set.
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Equivalence and Conditional Independence in Atomic Sheaf Logic 7

• For any map 𝑓 : 𝑌 −→ 𝑋 in C and 𝑔 ∈ (y𝑍 ) (𝑋 ), define 𝑔 · 𝑓 := 𝑔 ◦ 𝑓 .

The object mapping 𝑍 ↦→ y𝑍 extends to a full and faithful functor y : C→ Psh(C), the Yoneda functor [29].

Example 3.2 (Product presheaves). Let 𝑃1, . . . , 𝑃𝑛 be presheaves on C. Define the product presheaf 𝑃1 × · · · × 𝑃𝑛 in

Psh(C) by:

• For any object 𝑋 ∈ C, define

(𝑃1 × · · · × 𝑃𝑛) (𝑋 ) := 𝑃1 (𝑋 ) × · · · × 𝑃𝑛 (𝑋 ) ,

i.e., the product of sets.

• For any map 𝑓 : 𝑌 −→ 𝑋 in C and (𝑥1, . . . , 𝑥𝑛) ∈ (𝑃1 × · · · × 𝑃𝑛) (𝑋 ), define

(𝑥1, . . . , 𝑥𝑛) · 𝑓 := (𝑥1 ·𝑃1 𝑓 , . . . , 𝑥𝑛 ·𝑃𝑛 𝑓 ) ,

The above definition generalises to infinite products, and further to arbitrary category-theoretic limits and colimits, all

of which are defined on presheaves in a similar (pointwise) way, using the corresponding definitions in the category of

sets.

The next example is central to this paper.

Example 3.3. Let Sur be (a small category equivalent to) the category whose objects are non-empty finite sets

and whose morphisms are surjective functions. For any set 𝐴, we have a presheaf NV(𝐴) in Psh(Sur) of 𝐴-valued
nondeterministic variables (in the sense of Section 2), defined as follows.

• For any object Ω of Sur, define NV(𝐴) (Ω) to be the set of all functions Ω → 𝐴.

• For any map 𝑝 : Ω′ −→ Ω in Sur, and 𝑋 ∈ NV(𝐴) (Ω) define 𝑋 · 𝑝 to be 𝑋 ◦ 𝑝 ∈ NV(𝐴) (Ω′).

Grothendieck introduced a very general notion of what it means for a presheaf 𝑃 ∈ Psh(C) to be a sheaf relative to

a Grothendieck topology on C. A Grothendieck topology J specifies, for every object 𝑋 , a collection J𝑋 of families

of maps with codomain 𝑋 , in which each family of maps (𝑐𝑖 : 𝑌𝑖 - 𝑋 )𝑖∈𝐼 ∈ J𝑋 is deemed to provide a covering

family (more briefly cover) for 𝑋 . A presheaf 𝑃 is a J -sheaf if, for every such cover, every matching family of elements

(𝑦𝑖 ∈ 𝑃 (𝑌𝑖 ))𝑖∈𝐼 has a unique amalgamation 𝑥 ∈ 𝑃 (𝑋 ). The high-level idea is that the matching property, which says

that the 𝑦𝑖 elements agree with each other on overlapping parts of the cover, allows all the 𝑦𝑖 to be glued together

into a single amalgamation 𝑥 , which is an element of 𝑃 (𝑋 ). We shall not give the general definitions underlying the

emphasised words because, for this paper, it is not necessary to understand the notion of sheaf in its full generality.

Nonetheless, there is a point about the general definition worth making. The intuition that is usually presented for

the general definition is that the matching condition for the family (𝑦𝑖 ∈ 𝑃 (𝑌𝑖 ))𝑖∈𝐼 means that the different 𝑦𝑖 are

compatible with each other, and then the unique amalgamation ‘glues’ these compatible elements together to form

a single element 𝑥 ∈ 𝑃 (𝑋 ), which is possible because the object 𝑋 is covered by the family (𝑌𝑖 )𝑖∈𝐼 . In this paper, we

are going to work only with sheaves for atomic Grothendick topologies, for which the usual general intuition for

sheaves outlined above is not very helpful. In the case of an atomic topology, covers are single maps 𝑐 : 𝑌 - 𝑋 ,

matching families contain only one element 𝑦 ∈ 𝑃 (𝑌 ) (it needs to match only with itself, which turns out to be a

nontrivial condition) and the amalgamation 𝑥 ∈ 𝑃 (𝑋 ) is obtained from 𝑦 alone, so the usual ‘gluing’ intuition does not

apply. Instead, we shall use the terminology invariant element in place of matching family, and descendent in place of

amalgamation, since this seems more appropriate in the context of an atomic topology.
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8 Alex Simpson

We first introduce the atomic sheaf concept using the example of Sur, and then follow this with the generalisation

to an arbitrary small category C. In the case of Sur, an object Ω can be thought of as representing a ‘world’ of currently

available nondeterministic choices, and a map 𝑐 : Ω′ −→ Ω specifies an extension of the existing nondeterministic

choices in Ω to accommodate the additional nondeterminism potentially available in Ω′. Nondeterministic variables

form a presheaf NV(𝐴) simply because any nondeterministic variable 𝑋 ∈ NV(𝐴) (Ω) extends via 𝑐 to a corresponding

Ω′-based nondeterministic variable 𝑋 · 𝑐 := 𝑋 ◦ 𝑐 ∈ NV(𝐴) (Ω′). This latter nondeterministic variable is defined for all

nondeterministic choices in Ω′, but only makes use of nondeterminism already available in Ω; that is, (𝑋 · 𝑐) (𝜔 ′) =
(𝑋 · 𝑐) (𝜔 ′′) for any 𝜔 ′, 𝜔′′ ∈ Ω′ for which 𝑐 (𝜔 ′) = 𝑐 (𝜔 ′′). Furthermore, every element 𝑌 ∈ NV(𝐴) (Ω′), that only
makes use of nondeterminism in Ω, arises as 𝑌 = 𝑋 · 𝑐 for a unique 𝑋 ∈ NV(𝐴) (Ω). In other words, it has a unique

representation as a bona fide Ω-based nondeterministic variable 𝑋 . In order to formulate this technically, we say

that a nondeterministic variable 𝑌 ∈ NV(𝐴) (Ω′) is 𝑐-invariant if 𝑌 (𝜔 ′) = 𝑌 (𝜔 ′′) for any 𝜔 ′, 𝜔′′ ∈ Ω′ for which

𝑐 (𝜔 ′) = 𝑐 (𝜔 ′′). The presheaf NV(𝐴) then satisfies: every 𝑐-invariant 𝑌 ∈ NV(𝐴) (Ω′) arises as 𝑋 · 𝑐 for a unique

𝑋 ∈ NV(𝐴) (Ω), which we call the 𝑐-descendent of 𝑌 . As we shall see below, the property we have just elucidated asserts

that the presheaf NV(𝐴) is a sheaf for the atomic Grothendieck topology on the category Sur.

A similar story can be told for any small category C for which an object 𝑋 ∈ C can be thought of as a world of

current possibilities, and a map 𝑐 : 𝑌 −→ 𝑋 represents a way of extending the current world to another world 𝑌 with

additional possibilities. Given a presheaf 𝑃 an element 𝑥 ∈ 𝑃 (𝑋 ) and map 𝑐 : 𝑌 −→ 𝑋 , the element 𝑥 · 𝑐 ∈ 𝑃 (𝑌 ) represents
the extension of 𝑥 to incorporate the new possibilities from 𝑌 . The extended element 𝑥 · 𝑐 enjoys the property of

𝑐-invariance (Definition 3.6 below), which formalises that 𝑥 · 𝑐 does not depend on any of the possibilities in 𝑌 beyond

those already available in𝑋 . Moreover, for any 𝑦 ∈ 𝑃 (𝑌 ) that is 𝑐-invariant, the definition of atomic sheaf (Definition 3.8

below) says that there must exist a unique 𝑥 ∈ 𝑃 (𝑋 ) that, via the equation 𝑦 = 𝑥 · 𝑐 , makes explicit the true dependency

of 𝑦 only on 𝑋 .

The main intuition underpinning the above discussion can be summarised as follows. In the context of a category

C, for which we think of maps 𝑐 : 𝑌 −→ 𝑋 as extending the possibilities offered by state 𝑋 to a more refined set of

possibilities offered by state 𝑌 ,

• the presheaf property of 𝑃 says that we can extend any element 𝑥 ∈ 𝑃 (𝑋 ), defined using the possibilities at 𝑋 ,

to a corresponding element 𝑥 · 𝑐 ∈ 𝑃 (𝑌 ) that, although defined at 𝑌 , does not exploit the potential additional

generality of 𝑌 ;

• and the atomic sheaf property says that, for any element 𝑦 ∈ 𝑃 (𝑌 ), defined using the possibilities at 𝑌 in

such a way that 𝑦 does not exploit the potential greater generality afforded by 𝑌 over 𝑋 , there exists a unique

corresponding element 𝑥 ∈ 𝑃 (𝑋 ) that makes explicit the dependency of 𝑦 only on possibilities offered by 𝑋 .

Since we are interested only in atomic topologies, we can define the sheaf property (Definition 3.8 below) directly,

without needing to introduce the general notion of Grothendieck topology. However, we do need the atomic Grothendieck

topology to exist on the base category C, which happens if and only if the category C is coconfluent.

Definition 3.4 (Coconfluence). A category C is coconfluent1 if for any cospan 𝑋
𝑓
−→ 𝑍

𝑔
←− 𝑌 , there exists a span

𝑋
𝑢←−𝑊 𝑣−→ 𝑌 such that 𝑓 ◦ 𝑢 = 𝑔 ◦ 𝑣 .

Proposition 3.5. Sur is coconfluent.

1
In [23, A 2.1.11(h)] C is said to satisfy the right Ore condition.
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Equivalence and Conditional Independence in Atomic Sheaf Logic 9

Proof. Consider any cospan Ω𝑋

𝑝
−→ Ω𝑍

𝑞
←− Ω𝑌 in Sur, Define

Ω𝑊 := {(𝑥,𝑦) ∈ Ω𝑋 × Ω𝑌 | 𝑝 (𝑥) = 𝑞(𝑦)} .

Then 𝑢 := (𝑥,𝑦) ↦→ 𝑥 and 𝑣 := (𝑥,𝑦) ↦→ 𝑦 define surjective functions Ω𝑊 ↠ Ω𝑋 and Ω𝑊 ↠ Ω𝑌 , hence they are maps

in Sur, for which indeed 𝑝 ◦ 𝑢 = 𝑞 ◦ 𝑣 . (More briefly, the pullback in Set is a commuting square in Sur, though not a

pullback in Sur.) □

Let 𝑃 ∈ Psh(C) be a presheaf.

Definition 3.6 (Invariant element). Given 𝑐 : 𝑌 −→ 𝑋 and 𝑦 ∈ 𝑃 (𝑌 ) we say that 𝑦 is 𝑐-invariant if, for any parallel pair

of maps 𝑑, 𝑒 : 𝑍 −→ 𝑌 such that 𝑐 ◦ 𝑑 = 𝑐 ◦ 𝑒 , it holds that 𝑦 · 𝑑 = 𝑦 · 𝑒 .

Definition 3.7 (Descendent). Given 𝑐 : 𝑌 −→ 𝑋 and 𝑦 ∈ 𝑃 (𝑌 ) we say that 𝑥 ∈ 𝑃 (𝑋 ) is a 𝑐-descendent of 𝑦 if 𝑦 = 𝑥 · 𝑐 .

It is easily seen that if 𝑥 is a 𝑐-descendent of 𝑦 then 𝑦 is 𝑐-invariant. The notion of sheaf imposes a converse.

Definition 3.8 (Atomic sheaf). A presheaf 𝑃 ∈ Psh(C) is an atomic sheaf if, for every map 𝑐 : 𝑌 −→ 𝑋 in C, every

𝑐-invariant 𝑦 ∈ 𝑃 (𝑌 ) has a unique 𝑐-descendent 𝑥 ∈ 𝑃 (𝑋 ).

We shall also have use for the following weakening of the notion of sheaf.

Definition 3.9 (Separated presheaf). A presheaf 𝑃 ∈ Psh(C) is an separated (with respect to the atomic topology) if,

for every map 𝑐 : 𝑌 −→ 𝑋 in C, every 𝑐-invariant 𝑦 ∈ 𝑃 (𝑌 ) has at most one 𝑐-descendent 𝑥 ∈ 𝑃 (𝑋 )

Proposition 3.10. A presheaf 𝑃 ∈ Psh(C) is separated if and only if, for all 𝑥,𝑦 ∈ 𝑃 (𝑋 ) and 𝑞 : 𝑍 −→ 𝑋 , it holds that

𝑥 · 𝑞 = 𝑦 · 𝑞 implies 𝑥 = 𝑦.

Proof. Suppose 𝑃 is separated, and 𝑥,𝑦 and 𝑞 are such that 𝑥 · 𝑞 = 𝑦 · 𝑞. It then holds that 𝑥 · 𝑞 is 𝑞-invariant, and 𝑥

and 𝑦 are 𝑞-descendents of 𝑥 · 𝑞. So, by separatedness, 𝑥 = 𝑦.

The converse implication, showing that separatedness follows from the statement in the proposition, is easy. □

Propositions 3.11 and 3.12 below illustrate the notion of sheaf in the case of C = Sur.

Proposition 3.11. For any set 𝐴 the presheaf NV(𝐴) in Psh(Sur) is an atomic sheaf.

Proof. Consider any map 𝑐 : Ω′ −→ Ω in Sur and 𝑐-invariant 𝑌 ∈ NV(𝐴) (Ω′), i.e., function 𝑌 : Ω′ → 𝐴. Define

Ω′′ := {(𝜔 ′, 𝜔′′) ∈ Ω′ × Ω′ | 𝑐 (𝜔 ′) = 𝑐 (𝜔 ′′)} ,

and 𝑢 := (𝜔 ′, 𝜔′′) ↦→ 𝜔 ′ : Ω′′ −→ Ω′ and 𝑣 := (𝜔 ′, 𝜔′′) ↦→ 𝜔 ′′ : Ω′′ −→ Ω′. Clearly 𝑐 ◦𝑢 = 𝑐 ◦ 𝑣 . So, since 𝑌 is 𝑐-invariant,

𝑌 ◦ 𝑢 = 𝑌 · 𝑢 = 𝑌 · 𝑣 = 𝑌 ◦ 𝑣 . That is, for any (𝜔 ′, 𝜔′′) ∈ Ω′′, we have 𝑌 (𝜔 ′) = 𝑌 (𝜔 ′′); i.e., for any 𝜔 ∈ Ω, the function
𝑌 is constant on 𝑐−1 (𝜔). Define 𝑋 ∈ NV(𝐴) (Ω), i.e., 𝑋 : Ω(𝐴) by:

𝑋 (𝜔) := 𝑌 (𝜔 ′) where 𝜔 ′ ∈ 𝑐−1 (𝜔) . (7)

Since 𝑐 is surjective, this is a good definition by the constancy property remarked above. By definition, 𝑌 = 𝑋 ◦ 𝑐 = 𝑋 · 𝑐 ,
so 𝑋 is a 𝑐-descendent of 𝑌 . It is the unique such, because, for any 𝑐-descendent 𝑋 , the surjectivity of 𝑐 forces (7). □

Proposition 3.12. For any finite set Ω the representable presheaf y(Ω) in Psh(Sur) is an atomic sheaf.
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10 Alex Simpson

We omit the proof, which is very similar to the previous. This last proposition asserts that the atomic topology on Sur

is subcanonical.

As a final set of examples, it is standard (and also easily verified) that if 𝑃1, . . . , 𝑃𝑛 are sheaves then the product

presheaf 𝑃1 × · · · × 𝑃𝑛 is also a sheaf, the product sheaf. (A similar fact applies more generally to arbitrary category-

theoretic limits of sheaves.) In this statement, we introduce a notational convention we shall often adopt. We shall

typically use underlined names for sheaves (as with NV(𝐴)) in order to emphasise that they are sheaves not just

presheaves.

Assuming the small category C is coconfluent, we write Shat (C) for the full subcategory of atomic sheaves in Psh(C).
While the coconfluence condition was not actually used in the definition of atomic sheaf above, it nonetheless plays

a critical role. For the benefit of readers who know the relevant category theory, we reiterate that the coconfluence

condtion is equivalent to the collection of atomic covers in C forming a Grothendieck topology, which in turn means that

Shat (C) is a Grothendieck topos, and the inclusion functor Shat (C) → Psh(C) has a left adjoint a : Psh(C) → Shat (C),
the associated sheaf functor [29]. Composing with the Yoneda functor, we obtain a functor ay : C→ Shat (C). Because
we are working with atomic topologies, every map in C is a cover, i.e., it is mapped by ay to an epimorphism in Shat (C).
It thus follows from the Yoneda lemma that a necessary condition for every representable presheaf to be a sheaf (i.e.,

for the atomic topology to be subcanonical) is that all maps in C are epimorphic.

4 Atomic sheaf logic

For the next two sections, let C be an arbitrary coconfluent small category. We present a fragment of the internal logic

of the topos Shat (C) of atomic sheaves, which we will extend later with equivalence and conditional independence

formulas. The fragment we consider is simply multi-sorted first-order logic. Let Sort be a collection of sorts. We assume

a collection of primitive relation symbols, where each relation symbol R has an arity given as a finite sequence of sorts

arity(R) ∈ Sort∗. As in Section 2, variables xA have explicit sorts. The rules for forming atomic formulas are:

• if arity(R) = A1 . . .A𝑛 and xA1

1
, . . . , xA𝑛

𝑛 is a list of variables of the corresponding sorts, then R(xA1
1 , . . . , xA𝑛

𝑛 ) is a
formula;

• if xA, yA have the same sort then xA = yA is a formula.

The grammar for formulas extends atomic formulas with the usual constructs of first-order logic.

Φ ::= R(xA1

1
, . . . , xA𝑛

𝑛 ) | xA = yA | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | Φ→ Φ | ∃xA .Φ | ∀xA .Φ .

We write FV(Φ) for the set of free variables of a formula Φ.

Definition 4.1 (Semantic interpretation). A semantic interpretation in Shat (C) is given by a function mapping every

sort A to an atomic sheaf A (i.e., to an object of Shat (C)), and a function mapping every relation symbol R of arity

A1 . . .A𝑛 to a subsheaf R ⊆ A1 × · · · × A1.

Definition 4.2 (Subpresheaf/subsheaf). For 𝑃,𝑄 ∈ Psh(C), we say that 𝑄 is a subpresheaf of 𝑃 (notation 𝑄 ⊆ 𝑃 ) if:

• for every object 𝑋 ∈ C, we have 𝑄 (𝑋 ) ⊆ 𝑃 (𝑋 ), and
• for every map 𝑓 : 𝑌 −→ 𝑋 in C and element 𝑥 ∈ 𝑄 (𝑋 ), it holds that 𝑥 ·𝑄 𝑓 = 𝑥 ·𝑃 𝑓 .

For sheaves 𝑃,𝑄 with 𝑄 ⊆ 𝑃 , we say 𝑄 is a subsheaf of 𝑃 .

The following is standard, and also easily verified.
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Proposition 4.3. Given a presheaf 𝑃 ∈ Psh(C) and a function 𝑄 mapping every object 𝑋 ∈ C to a subset of 𝑃 (𝑋 ), the
function 𝑄 determines a (necessarily unique) subpresheaf of 𝑃 if and only if:

• for every 𝑓 : 𝑌 −→ 𝑋 in C and 𝑥 ∈ 𝑄 (𝑋 ), it holds that 𝑥 ·𝑃 𝑓 ∈ 𝑄 (𝑌 ).

If the above holds and 𝑃 is also a sheaf, then the uniquely determined subpresheaf 𝑄 is itself a sheaf if and only if

• for every 𝑓 : 𝑌 −→ 𝑋 in C and 𝑥 ∈ 𝑃 (𝑋 ), if 𝑥 ·𝑃 𝑓 ∈ 𝑄 (𝑌 ) then 𝑥 ∈ 𝑄 (𝑋 ).

(This characterisation is valid in the form above because we are considering only sheaves for the atomic topology.)

The three propositions below illustrate the notion of subsheaf. The first two observe that the relations of equiextension

and conditional independence of nondeterministic variables (Definitions 2.1 and 2.2) form subsheaves, a fact which

will enable us to extend atomic sheaf logic with equivalence and conditional-independence relations at the end of the

present section. Although the proofs are straightforward, we include them to help give readers who are not familiar

with sheaves some feeling for the subsheaf property.

Proposition 4.4. The subsets

{(𝑋,𝑌 ) | 𝑋 ⊲⊳𝑌 } ⊆ (NV(𝐴) × NV(𝐴)) (Ω)

define a subsheaf ⊲⊳𝐴⊆ NV(𝐴) × NV(𝐴) via Proposition 4.3.

Proof. For the subpresheaf property, suppose (𝑋,𝑌 ) ∈ (NV(𝐴) × NV(𝐴)) (Ω) are such that (𝑋,𝑌 ) ∈ ⊲⊳𝐴 (Ω); i.e.,
we have equality of images𝑋 (Ω) = 𝑌 (Ω). Let 𝑞 : Ω′ −→ Ω be a map in Sur. We need to show that (𝑋 ·𝑞,𝑌 ·𝑞) ∈ ⊲⊳𝐴 (Ω′).
But indeed

(𝑋 · 𝑞) (Ω′) = 𝑋 (𝑞(Ω′)) = 𝑋 (Ω) = 𝑌 (Ω) = 𝑌 (𝑞(Ω′)) = (𝑌 · 𝑞) (Ω′) ,

where the second and fourth equalities hold because 𝑞 is surjective.

For the subsheaf property, suppose we have (𝑋,𝑌 ) ∈ (NV(𝐴) × NV(𝐴)) (Ω) and map 𝑞 : Ω′ −→ Ω in Sur such that

(𝑋 ·𝑞,𝑌 ·𝑞) ∈ ⊲⊳𝐴 (Ω′). By the definition of equiextension,𝑋 (𝑞(Ω′)) = 𝑌 (𝑞(Ω′)). Because 𝑞 is surjective,𝑋 (Ω) = 𝑌 (Ω).
That is, (𝑋,𝑌 ) ∈ ⊲⊳𝐴 (Ω), as required by Proposition 4.3 to show the subsheaf property. □

Proposition 4.5. The subsets

{(𝑋,𝑌, 𝑍 ) | 𝑋⊥⊥𝑌 |𝑍 } ⊆ (NV(𝐴) × NV(𝐵) × NV(𝐶)) (Ω)

define a subsheaf ⊥⊥𝐴,𝐵 |𝐶 ⊆ NV(𝐴) × NV(𝐵) × NV(𝐶) via Prop. 4.3.

Proof. We leave the subpresheaf property to the reader and verify just the subsheaf property. Suppose we have

(𝑋,𝑌, 𝑍 ) ∈ (NV(𝐴) × NV(𝐵) × NV(𝐶)) (Ω) and map 𝑞 : Ω′ −→ Ω in Sur such that (𝑋 · 𝑞, 𝑌 · 𝑞, 𝑍 · 𝑞) ∈ ⊥⊥𝐴,𝐵 |𝐶 (Ω′);
i.e., 𝑋 · 𝑞⊥⊥𝑌 · 𝑞 | 𝑍 · 𝑞. We need to show that (𝑋,𝑌, 𝑍 ) ∈ ⊥⊥𝐴,𝐵 |𝐶 (Ω); i.e., 𝑋 ⊥⊥𝑌 | 𝑍 .

Suppose that there exists 𝜔1 ∈ Ω such that 𝑋 (𝜔1) = 𝑎 and 𝑍 (𝜔1) = 𝑐 , and there exists 𝜔2 ∈ Ω such that 𝑌 (𝜔2) = 𝑏

and𝑍 (𝜔2) = 𝑐 . Using the surjectivity of 𝑞, let𝜔 ′
1
, 𝜔′

2
∈ Ω′ be such that 𝑞(𝜔 ′

1
) = 𝜔1 and 𝑞(𝜔 ′

2
) = 𝜔2. Then (𝑋 ·𝑞) (𝜔 ′

1
) = 𝑎

and (𝑍 · 𝑞) (𝜔 ′
1
) = 𝑐 . Similarly (𝑌 · 𝑞) (𝜔 ′

2
) = 𝑏 and (𝑍 · 𝑞) (𝜔 ′

2
) = 𝑐 . Because 𝑋 · 𝑞⊥⊥𝑌 · 𝑞 | 𝑍 · 𝑞, there exists 𝜔 ′ ∈ Ω′

such that (𝑋 · 𝑞) (𝜔 ′) = 𝑎 and (𝑌 · 𝑞) (𝜔 ′) = 𝑏 and (𝑍 · 𝑞) (𝜔 ′) = 𝑐 . So 𝜔 := 𝑞(𝜔 ′) satisfies 𝑋 (𝜔) = 𝑎 and 𝑌 (𝜔) = 𝑏 and

𝑍 (𝜔) = 𝑐 , showing that indeed 𝑋 ⊥⊥𝑌 | 𝑍 . □

As further interesting examples of subsheaves, we show how subsheaves of the sheaf NV(𝐴) can be defined by using

modalities to lift properties 𝑃 ⊆ 𝐴 to properties of 𝐴-valued nondeterministic variables.
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12 Alex Simpson

𝑋 ⊩𝜌 R(xA1

1
, . . . , xA𝑛

𝑛 ) ⇔ (𝜌 (xA1

1
), . . . , 𝜌 (xA𝑛

𝑛 )) ∈ R(𝑋 )

𝑋 ⊩𝜌 xA = yA ⇔ 𝜌 (xA) = 𝜌 (yA)
𝑋 ⊩𝜌 ¬Φ ⇔ 𝑋 ̸⊩𝜌 Φ

𝑋 ⊩𝜌 Φ ∧ Ψ ⇔ 𝑋 ⊩𝜌 Φ and 𝑋 ⊩𝜌 Ψ

𝑋 ⊩𝜌 Φ ∨ Ψ ⇔ 𝑋 ⊩𝜌 Φ or 𝑋 ⊩𝜌 Ψ

𝑋 ⊩𝜌 Φ→ Ψ ⇔ 𝑋 ̸⊩𝜌 Φ or 𝑋 ⊩𝜌 Ψ

𝑋 ⊩𝜌 ∃xA .Φ ⇔ ∃𝑌 . ∃𝑓 : 𝑌 −→ 𝑋 . ∃𝑥 ∈ 𝐴(𝑌 ) . 𝑌 ⊩(𝜌 ·𝑓 ) [xA:=𝑥 ] Φ

𝑋 ⊩𝜌 ∀xA .Φ ⇔ ∀𝑌 . ∀𝑓 : 𝑌 −→ 𝑋 .∀𝑥 ∈ 𝐴(𝑌 ) . 𝑌 ⊩(𝜌 ·𝑓 ) [xA:=𝑥 ] Φ

Fig. 2. Semantics of atomic sheaf logic

Proposition 4.6. For any set 𝐴 and subset 𝑃 ⊆ 𝐴, the definitions

□𝑃 (Ω) := {𝑋 : Ω → 𝐴 | ∀𝜔 ∈ Ω. 𝑋 (𝜔) ∈ 𝑃}

^𝑃 (Ω) := {𝑋 : Ω → 𝐴 | ∃𝜔 ∈ Ω. 𝑋 (𝜔) ∈ 𝑃}

define subsheaves □𝑃 and ^𝑃 of NV(𝐴) in Shat (Sur), by Proposition 4.3.

This time we omit the proof, since the modality subsheaves will not play any further role in the paper. We mention,

however, that the constructions in Proposition 4.6 can be used as the basis for an interesting modal extension of the

first-order atomic sheaf logic of Shat (Sur), in which the modalities mediate between the ordinary first-order logic of

variables valued in 𝐴 and the sheaf logic of nondeterministic variables valued in NV(𝐴).
Returning to the general semantic interpretation of atomic sheaf logic in Shat (C), the semantics of formulas is given

by a forcing relation

𝑋 ⊩𝜌 Φ ,

where Φ is a formula, 𝑋 is an object of C and

𝜌 ∈
∏

xA∈{xA1
1
,...,xA𝑛𝑛 }

𝐴(𝑋 )

is what we call an 𝑋 -assignment: it maps every variable xA in a set {xA1

1
, . . . , xA𝑛

𝑛 } ⊇ FV(Φ) to an element 𝜌 (xA) ∈ A(𝑋 ),
where A is the sheaf interpreting the sort A of the variable.

The definition of the forcing relation is presented in Fig. 2. In the quantifier clauses, we write write 𝜌 · 𝑓 for the

𝑌 -assignment zB ↦→ 𝜌 (zB) · 𝑓 , where 𝜌 is an 𝑋 -assignment and 𝑓 : 𝑌 −→ 𝑋 is a map in C,

The clauses for the propositional connectives in Fig. 2 look remarkably simple-minded. They are, nonetheless,

equivalent to themore involved clauses that appear in the sheaf semantics for logic in a sheaf topos [29]. The simplification

in formulation is possible because we are working in the special case of atomic sheaves. The clauses for the existential

and universal quantifier are also taken from sheaf semantics, and do not admit further simplification. Their non-local

nature (they involve a change of world along 𝑓 : 𝑌 → 𝑋 ) is the key feature that will give atomic sheaf logic its character,

when we later include equivalence and conditional independence formulas.
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Equivalence and Conditional Independence in Atomic Sheaf Logic 13

The next results summarise fundamental properties of the forcing relation and the logic it induces. The first is very

basic, but we include it explicitly because the notion of locality it addresses, namely the dependency of semantics only

on assignments to the free variables appearing in a formula, has been a delicate issue in the context of (in)dependence

logics.

Proposition 4.7 (Locality). For any formula Φ, object 𝑋 of C and 𝑋 -assignments 𝜌, 𝜌′ that are defined and coincide

on FV(Φ).
𝑋 ⊩𝜌 Φ if and only if 𝑋 ⊩𝜌 ′ Φ.

Proposition 4.8 (Sheaf property). For any formula Φ, map 𝑓 : 𝑌 −→ 𝑋 in C, and 𝑋 -assignment 𝜌 defined on FV(Φ).

𝑋 ⊩𝜌 Φ if and only if 𝑌 ⊩𝜌 ·𝑓 Φ. (8)

Proposition 4.8 is called the sheaf property because it is equivalent to the statement that, for every formula Φ with

FV(Φ) ⊆ {xA1

1
, . . . , xA𝑛

𝑛 }, it holds that

{(𝑥1, . . . , 𝑥𝑛) | 𝑋 ⊩
xA𝑖
𝑖
↦→𝑥𝑖

Φ} ⊆ (𝐴1 × · · · ×𝐴𝑛) (𝑋 ) (9)

defines a subsheaf of 𝐴1 × . . .×𝐴𝑛 via Proposition 4.3.

Propositions 4.7 and 4.8 are both proved by induction on the structure of the formula. We omit the proof of

Proposition 4.7, which is straightforward. Proposition 4.8 asserts that the monotonicity and local character properties

from [29, §VI.7] hold. In loc. cit., these properties are shown to hold for arbitrary Grothendiek topologies, whereas

Proposition 4.8 concerns just the special case of atomic topologies. Nevertheless, we give a direct proof of Proposition 4.8,

both for the benefit of readers who do not know general sheaf theory, and also to demonstrate the crucial role played

by the coconfluence property of C.

Proof of Proposition 4.8. By induction on the structure of Φ.

In the case that Φ is an atomic formula of the form R(xA1

1
, . . . , xA𝑛

𝑛 ), property (8) holds because R is a subsheaf of

A1 × · · · × A1.
If Φ is an equality xA = yA, then the left-to-right implication of (8) is immediate. For the right-to-left implication,

suppose 𝑌 ⊩𝜌 ·𝑓 xA = yA; that is, 𝜌 (xA) · 𝑓 = 𝜌 (yA) · 𝑓 . Since A is a sheaf, hence separated, we have 𝜌 (xA) = 𝜌 (yA), by
Proposition 3.10. That is, 𝑋 ⊩𝜌 xA = yA, as required.

The cases for the propositional connectives are all easy. We note only that, for the cases of negation and implication,

in which there are negated clauses in the definition of the forcing relation (Fig. 2), the induction hypothesis is used in

the opposite direction of (8) to the implication being proved.

In the case that Φ is an existentially quantified formula ∃xA .Φ′, we prove the left-to-right implication of (8).

Accordingly, suppose that 𝑋 ⊩𝜌 ∃xA .Φ′. By the forcing clause for the existential quantifier, there exist 𝑔 : 𝑍 −→ 𝑋 and

𝑥 ∈ 𝐴(𝑍 ) such that 𝑍 ⊩(𝜌 ·𝑔) [xA:=𝑥 ] Φ
′
. By coconfluence, there exists a span 𝑌

𝑓 ′
←−−𝑊

𝑔′
−→ 𝑍 such that 𝑔 ◦ 𝑔′ = 𝑓 ◦ 𝑓 ′.

By the induction hypothesis,𝑊 ⊩(𝜌 ·𝑔·𝑔′ ) [xA:=𝑥 ·𝑔′ ] Φ
′
; i.e.,𝑊 ⊩(𝜌 ·𝑓 ·𝑓 ′ ) [xA:=𝑥 ·𝑔′ ] Φ

′
. Whence, by the forcing clause for

the existential quantifier, 𝑌 ⊩𝜌 ·𝑓 ∃xA .Φ′, as required. We leave the easier right-to-left implication of (8), which does

not involve coconfluence, to the reader.

The proof for the universal quantifier is similar. (It can also be bypassed, by noting that the forcing interpretation of

∃xA .Φ′ is equivalent to that for ¬∃xA .¬Φ′.) □
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14 Alex Simpson

It is standard that sheaf semantics, for an arbitrary Grothendieck topology, always validates intuitionistic logic. In

the special case of an atomic topology, the law of excluded middle Φ ∨ ¬Φ is also validated, hence atomic sheaf logic is

classical. In more detail, atomic topologies are special cases of dense Grothendieck topologies, and categories of sheaves

for the latter are always boolean, hence classical logic is validated. This whole picture is explained in [29]. We shall not,

however, assume familiarity with this abstract picture. Accordingly, we give a brief, direct explanation of how atomic

sheaf logic validates classical logic.

A formula Φ is said to be true (in Shat (C)) under all assignments if, for every object 𝑋 of C and 𝑋 -assignments 𝜌

defined on FV(Φ),it holds that 𝑋 ⊩𝜌 Φ.

Theorem 4.9 (Classical logic). If Φ is a theorem of (multisorted) classical logic then it is true in Shat (C) under all
assignments.

Proof (outline). It follows trivially from the definition of the forcing relation Fig. 2 that every classical propositional

tautology (including every instance of the law of excluded middle Φ ∨ ¬Φ) is true under all assignments (assuming, as

we do, that we are working in a classical meta-theory).

The verification of the validity of the axioms and inference rules pertaining to quantifiers takes a little more work, but

is not difficult. Since we are working in a special case of sheaf semantics, where such facts are anyway well established

in far greater generality, we do not go into details. A sceptical reader may enjoy verifying this for themselves, using

their preferred formulation of the axioms and rules of multi-sorted first-order logic. □

By Theorem 4.9, atomic sheaf logic is just multisorted first-order classical logic with a nonstandard semantics. The

logic includes the equality relation, which is given a canonical interpretation. The nonstandard semantics allows relation

symbols to be interpreted as arbitrary subsheaves of product sheaves. Atomic sheaf categories possess interesting such

subsheaves that have no analogue in the standard semantics of first-order logic. Our main examples of this phenomenon

are the two relations from the title: equivalence and conditional independence.

To end this section, we observe that, in the case of our running example Shat (Sur), atomic sheaf logic can incorporate

the relations of equivalence and conditional independence from multiteam semantics, as in Section 2. Syntactically, we

simply extend the logic with equivalence and conditional independence formulas (1) and (2), as in Section 2. Actually,

we can do this simply by including equivalence and conditional independence as particular relation symbols, so the

equivalence and conditional independence formulas are then instances of atomic formulas of the form R(xA1

1
, . . . , xA𝑛

𝑛 ).
Specifically, for equivalence, we include relation symbols ∼A1 ...A𝑛

with arity(∼A1 ...A𝑛
) = A1 . . .A𝑛A1 . . .A𝑛 . Similarly,

for conditional independence, we include relation symbols ⊥A1 ...A𝑙 ,B1 ...B𝑚 |C1 ...C𝑛
with arity(⊥A1 ...A𝑙 ,B1 ...B𝑚 |C1 ...C𝑛

) =
A1 . . .A𝑙B1 . . .B𝑚C1 . . .C𝑛 .

To interpret the extended logical language, we instantiate the semantic interpretation of Definition 4.1, in the special

case of the category Shat (Sur), by requiring that every sort A is interpreted by a sheaf of nondeterministic variables

A := NV(JAK) for some set JAK. We then interpret each relation ∼A1 ...A𝑛
as the subsheaf of

(∏𝑛
𝑖=1 A𝑖

)
×
(∏𝑛

𝑖=1 A𝑖
)
that

is isomorphic to the subsheaf ⊲⊳(∏𝑛
𝑖=1JA𝑖K) of NV(

∏𝑛
𝑖=1J𝐴𝑖K) ×NV(

∏𝑛
𝑖=1JA𝑖K)) from Proposition 4.4 along the canonical

isomorphism between the two product sheaves. A similar procedure, using ⊥⊥𝐴,𝐵 |𝐶 from Proposition 4.5, defines the

semantics of conditional independence formulas as subsheaves. These rather convoluted definitions are equivalent to

simply interpreting equivalence and conditional independence formulas directly using the conditions given in Figure 1.

The benefit of the convoluted explanation in terms of subsheaves is that it presents the extended logic as a special
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Equivalence and Conditional Independence in Atomic Sheaf Logic 15

case of general atomic sheaf logic, and in doing so explains why the meta-logical properties (locality, sheaf property,

classical logic) hold for the extended logic.

5 Atomic equivalence

The interpretation of equivalence formulas at the end of Section 4 was given only for the relation of equiextension of

nondeterministic variables, interpreted over the sheaves of nondeterministic variables in Shat (Sur) using Proposition 4.4.
Atomic sheaves offer, however, a much more general perspective on the notion of equivalence. Every category

Shat (C) of atomic sheaves possesses a canonical notion of equivalence, which we call atomic equivalence. Specifically,

for every sheaf 𝑃 , there is an associated subsheaf ∼𝑃 ⊆ 𝑃 × 𝑃 that is an equivalence relation in Shat (C). (A subsheaf

𝐸 ⊆ 𝑃 × 𝑃 is an equivalence relation in Shat (C) if 𝐸 (𝑋 ) ⊆ 𝑃 (𝑋 ) × 𝑃 (𝑋 ) is an equivalence relation, for every 𝑋 ∈ C.)

Theorem 5.1 (Atomic eqivalence). Let 𝑃 be any sheaf in Shat (C).

∼𝑃 (𝑋 ) := {(𝑥, 𝑥 ′) ∈ 𝑃 (𝑋 ) × 𝑃 (𝑋 ) | ∃𝑍, ∃𝑢,𝑢′ : 𝑍 −→ 𝑋 . 𝑥 · 𝑢 = 𝑥 ′ · 𝑢′}

defines a subsheaf ∼𝑃 ⊆ 𝑃 × 𝑃 via Proposition 4.3. Moreover, this is an equivalence relation in Shat (C).

Proof. For the subpresheaf property, suppose (𝑥, 𝑥 ′) ∈ ∼𝑃 (𝑋 ). Thus, for some 𝑢,𝑢′ : 𝑍 −→ 𝑋 , we have 𝑥 ·𝑢 = 𝑥 ′ ·𝑢′.
Consider any 𝑓 : 𝑌 −→ 𝑋 . By coconfluence, there exist 𝑔 : 𝑊 −→ 𝑍 and 𝑣 : 𝑊 −→ 𝑌 such that 𝑓 ◦ 𝑣 = 𝑢 ◦ 𝑔. Similarly,

there exist 𝑔′ :𝑊 ′ −→ 𝑍 and 𝑣 ′ :𝑊 ′ −→ 𝑌 such that 𝑓 ◦ 𝑣 ′ = 𝑢′ ◦ 𝑔′. Again by coconfluence, there exist ℎ : 𝑉 −→𝑊 and

ℎ′ : 𝑉 −→𝑊 ′ such that 𝑔 ◦ ℎ = 𝑔′ ◦ ℎ′. Then:

𝑥 · 𝑓 · 𝑣 · ℎ = 𝑥 · 𝑢 · 𝑔 · ℎ = 𝑥 ′ · 𝑢′ · 𝑔′ · ℎ′ = 𝑥 ′ · 𝑓 · 𝑣 ′ · ℎ′ .

So 𝑣 ◦ ℎ and 𝑣 ′ ◦ ℎ′ : 𝑉 −→ 𝑌 show that (𝑥 · 𝑓 , 𝑥 ′ · 𝑓 ) ∈ ∼𝑃 (𝑌 ).
For the subsheaf property, consider any (𝑥, 𝑥 ′) ∈ 𝑃 (𝑋 ) × 𝑃 (𝑋 ) and 𝑓 : 𝑌 −→ 𝑋 such that (𝑥 · 𝑓 , 𝑥 ′ · 𝑓 ) ∈ ∼𝑃 (𝑌 ); i.e.,

there exist 𝑢,𝑢′ : 𝑍 −→ 𝑌 such that 𝑥 · 𝑓 ·𝑢 = 𝑥 ′ · 𝑓 ·𝑢′. Thus 𝑓 ◦𝑢 and 𝑓 ◦𝑢′ : 𝑍 −→ 𝑋 show that indeed (𝑥, 𝑥 ′) ∈ ∼𝑃 (𝑋 ).
For the equivalence relation property, reflexivity and symmetry are trivial. For transitivity, suppose (𝑥, 𝑥 ′) ∈ ∼𝑃 (𝑋 )

and (𝑥 ′, 𝑥 ′′) ∈ ∼𝑃 (𝑋 ); i.e., there exist 𝑢,𝑢′ : 𝑍 −→ 𝑋 such that 𝑥 · 𝑢 = 𝑥 ′ · 𝑢′ and 𝑣, 𝑣 ′ : 𝑍 ′ −→ 𝑋 such that 𝑥 ′ · 𝑣 = 𝑥 ′′ · 𝑣 ′.
By coconfluence, there exist𝑤 :𝑊 −→ 𝑍 and𝑤 ′ :𝑊 −→ 𝑍 ′ such that 𝑢′ ◦𝑤 = 𝑣 ◦𝑤 ′. Then

𝑥 · 𝑢 ·𝑤 = 𝑥 ′ · 𝑢′ ·𝑤 = 𝑥 ′ · 𝑣 ·𝑤 ′ = 𝑥 ′′ · 𝑣 ′ ·𝑤 ′ .

So 𝑢 ◦𝑤 and 𝑣 ′ ◦𝑤 ′ show that (𝑥, 𝑥 ′′) ∈ ∼𝑃 (𝑋 ). □

In the special case of sheaves NV(𝐴) of nondeterministic variables in Shat (Sur), the canonical equivalence ∼NV(𝐴)
coincides with the equiextension subsheaf ⊲⊳𝐴 defined in Proposition 4.4.

Proposition 5.2. The subsheaf ∼NV(𝐴) ⊆ NV(𝐴) × NV(𝐴) in Shat (Sur) coincides with ⊲⊳𝐴⊆ NV(𝐴) × NV(𝐴).

Proof. Consider any 𝑋,𝑋 ′ : Ω → 𝐴.

Suppose there exist 𝑢,𝑢′ : Ω′ −→ Ω such that 𝑋 · 𝑢 = 𝑋 ′ · 𝑢′; i.e., 𝑋 ◦ 𝑢 = 𝑋 ′ ◦ 𝑢′. Then 𝑋 ⊲⊳ 𝑋 ′ because

𝑋 (Ω) = 𝑋 (𝑢 (Ω′)) = 𝑋 ′ (𝑢′ (Ω′)) = 𝑋 ′ (Ω) ,

using the surjectivity of 𝑢 and 𝑢′ for the first and last equalities.

Conversely, suppose 𝑋 ⊲⊳ 𝑋 ′, i.e., 𝑋 (Ω) = 𝑋 ′ (Ω). Define Ω𝐴 := 𝑋 (Ω), which is a finite nonempty set hence

(up to isomorphism) an object of Sur. The functions 𝑋 and 𝑋 ′ are surjective from Ω to Ω𝐴 , hence give morphisms
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16 Alex Simpson

®x ∼ ®x (10)

®x ∼ ®y → ®y ∼ ®x (11)

®x ∼ ®y ∧ ®y ∼ ®z → ®x ∼ ®z (12)

®x ∼ ®y → 𝜋 (®x) ∼ 𝜋 (®y) (13)

®x, x ∼ ®y, y → ®x ∼ ®y (14)

®x ∼ ®y ∧ Φ(®x) → Φ(®y) (15)

®x ∼ ®x′ → ∃y′ . (®x, y ∼ ®x′, y′) (16)

Fig. 3. Axioms for equivalence

𝑋,𝑋 ′ : Ω −→ Ω𝐴 in Sur. By coconfluence, there exist maps 𝑝, 𝑞 : Ω′ −→ Ω such that 𝑋 ◦ 𝑝 = 𝑋 ′ ◦ 𝑞. But this means that

𝑋 · 𝑝 = 𝑋 ′ · 𝑞, hence (𝑋,𝑋 ′) ∈ ∼NV(𝐴) (Ω) . □

Using the notion of atomic equivalence, we give a canonical semantics to equivalence formulas (1) in any atomic sheaf

topos. As at the end of Section 4, we include such formulas by considering them as given by relation symbols ∼A1 ...A𝑛

with arity(∼A1 ...A𝑛
) = A1 . . .A𝑛A1 . . .A𝑛 . The general semantic interpretation of sorts and relations (Definition 4.1) is

then extended to require that each relation symbol ∼A1 ...A𝑛
is interpreted as the subsheaf

∼A1 ...A𝑛
:= ∼A1×···×A𝑛

⊆ (A1 × · · · × A𝑛) × (A1 × · · · × A𝑛) .

The forcing relation 𝑋 ⊩𝜌 xA1

1
, . . . , xA𝑛

𝑛 ∼ yA1

1
, . . . , yA𝑛

𝑛 is then covered by the general clause for relation symbols R in

Figure 2. This is equivalent to defining:

𝑋 ⊩𝜌 xA1

1
, . . . , xA𝑛

𝑛 ∼ yA1

1
, . . . , yA𝑛

𝑛 ⇔ ( (𝜌 (xA1

1
),. . . ,𝜌 (xA𝑛

𝑛 )) , (𝜌 (yA1

1
),. . . ,𝜌 (yA𝑛

𝑛 )) ) ∈ ∼𝐴1×···×𝐴𝑛
(𝑋 ) .

By Proposition 5.2, the above definition generalises the multiteam interpretation of independence as the equiextension

relation, in the case C = Sur and A = NV(JAK), that was given in Section 4.

We now explore the logic of atomic equivalence, valid in any category of atomic sheaves. Fig. 3 lists formulas that are

valid in our semantics, which we identify as axioms for equivalence. In them, we have abbreviated variable sequences

by vectors. It is implicitly assumed that the lengths and sorts of the variable sequences match so that the equivalence

formulas are legitimate. Axioms (10)–(12) simply state that ∼ is an equivalence relation. The next two assert structural

properties. In (13), 𝜋 is any permutation of the variable sequence, and the axiom asserts that equivalence is preserved

if one permutes variables in the same way on both sides. By axiom (14), equivalence is also preserved if one drops

identically positioned variables from both sides. Axiom (15) is more interesting: equivalence enjoys a substitutivity

property, similar to the substitutivity property of equality. However, an important restriction is hidden in the notation.

It is assumed that all free variables in Φ are contained in a sequence ®z of distinct variables matching in length and

sorting with ®x, and hence also with ®y. We then write Φ(®x) for the substitution Φ(®x/®z), and similarly for Φ(®y). We

call (15) the invariance principle, as it states that properties not involving extraneous variables are invariant under

equivalence. Axiom (16) is called the transfer principle. If ®x and ®x′ are jointly equivalent, then for any variable y there

exists a (necessarily equivalent) variable y′ such that ®x, y and ®x′, y′ are jointly equivalent.

This soundness of axioms (10) to (14) is straightforward. The soundness of the invariance principle (15) is a conse-

quence of the following simple lemma.
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Lemma 5.3. For any 𝑃 ∈ Shat (C) with subsheaf 𝑄 ⊆ 𝑃 . If 𝑥, 𝑥 ′ ∈ 𝑃 (𝑋 ) are such that (𝑥, 𝑥 ′) ∈ ∼𝑃 (𝑋 ) and 𝑥 ∈ 𝑄 (𝑋 )
then 𝑥 ′ ∈ 𝑄 (𝑋 ).

Proof. Because (𝑥, 𝑥 ′) ∈ ∼𝑃 (𝑋 ), we have that there exist 𝑢,𝑢′ : 𝑌 −→ 𝑋 such that 𝑥 · 𝑢 = 𝑥 ′ · 𝑢′. As 𝑥 ∈ 𝑄 (𝑋 ) and
𝑄 is a subpresheaf, we have 𝑥 · 𝑢 ∈ 𝑄 (𝑌 ), that is 𝑥 ′ · 𝑢′ ∈ 𝑄 (𝑌 ). Hence, since 𝑄 is a subsheaf, 𝑥 ′ ∈ 𝑄 (𝑋 ). □

The invariance principle follows from the lemma, because Φ defines a subsheaf of A1 × · · · ×A𝑛 via (9), where A1, . . . ,A𝑛
are the sorts of the vector ®x = xA1

1
, . . . , xA𝑛

𝑛 (and hence also of ®y) in (15).

The soundness of the transfer principle (16) is a consequence of the lemma below.

Lemma 5.4. Let 𝑃,𝑄 be sheaves and let 𝑥, 𝑥 ′ ∈ 𝑃 (𝑋 ) such that (𝑥, 𝑥 ′) ∈ ∼𝑃 (𝑋 ). For any 𝑦 ∈ 𝑃 (𝑋 ), there exists
𝑝 : 𝑍 −→ 𝑋 and 𝑦′ ∈ 𝑄 (𝑍 ) such that ((𝑥 · 𝑝,𝑦 · 𝑝), (𝑥 ′ · 𝑝,𝑦′)) ∈ ∼𝑃×𝑄 (𝑍 ).

Proof. Since (𝑥, 𝑥 ′) ∈ ∼𝑃 (𝑋 ), there exist maps 𝑢,𝑢′ : 𝑌 −→ 𝑋 such that 𝑥 · 𝑢 = 𝑥 ′ · 𝑢′. By coconfluence, let

𝑣, 𝑣 ′ : 𝑍 −→ 𝑌 be such that 𝑢 ◦ 𝑣 = 𝑢′ ◦ 𝑣 ′. Define 𝑝 := 𝑢 ◦ 𝑣 and 𝑦′ := 𝑦 · 𝑢 · 𝑣 ′. By coconfluence again, let𝑤,𝑤 ′ :𝑊 −→ 𝑍

be such that𝑤 ◦ 𝑣 = 𝑤 ′ ◦ 𝑣 ′. Then𝑤,𝑤 ′ show that ((𝑥 · 𝑝, 𝑦 · 𝑝), (𝑥 ′ · 𝑝, 𝑦′)) ∈ ∼𝑃×𝑄 (𝑍 ), because:

𝑥 · 𝑝 ·𝑤 = 𝑥 · 𝑢 · 𝑣 ·𝑤 = 𝑥 ′ · 𝑢′ · 𝑣 ′ ·𝑤 ′ = 𝑥 ′ · 𝑢 · 𝑣 ·𝑤 ′ = 𝑥 ′ · 𝑝 ·𝑤 ′

and

𝑦 · 𝑝 ·𝑤 = 𝑦 · 𝑢 · 𝑣 ·𝑤 = 𝑦 · 𝑢 · 𝑣 ′ ·𝑤 ′ = 𝑦′ ·𝑤 ′ .

□

6 Independent pullbacks

Whereas Section 5 has given equivalence formulas a canonical interpretation in an arbitrary atomic sheaf topos Shat (C),
the interpretation of conditional independence formulas (seemingly) requires additional structure on the generating

category C. Primary amongst this is that C possess independent pullbacks, as defined below.

Definition 6.1 (Independent pullbacks). A system of Independent pullbacks on a category C is given by a collection of

commuting squares in C, called independent squares. A commuting square

𝑋
𝑓- 𝑌

𝑍

𝑔

?
𝑣- 𝑊

𝑢

?
(17)

is then defined to be an independent pullback if it is independent and it satisfies the usual pullback property restricted to

independent squares; i.e., for every independent square

𝑋 ′
𝑓 ′- 𝑌

𝑍

𝑔′

?
𝑣- 𝑊

𝑢

?

there exists a unique 𝑞 : 𝑋 ′ −→ 𝑋 such that 𝑓 ◦ 𝑝 = 𝑓 ′ and 𝑔′ ◦ 𝑝 = 𝑔. The assumed collection of independent squares

and derived collection of independent pullbacks are together required to satisfy the five conditions below.
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(IP1) Every commuting square of the form below is independent.

𝑋 - 𝑌

𝑍

? id𝑍- 𝑍

?

(IP2) If the left square below is independent then so is the right.

𝑋
𝑓- 𝑌 𝑋

𝑔- 𝑍

𝑍

𝑔

?
𝑣- 𝑊

𝑢

?
𝑌

𝑓

?
𝑢- 𝑊

𝑣

?

(IP3) If (𝐴) and (𝐵) below are independent, then so is the composite rectangle (𝐴𝐵).

𝑋
𝑠- 𝑌

𝑡- 𝑍

(𝐴) (𝐵)

𝑈

𝑝

?

𝑢
- 𝑉

𝑞

?

𝑣
- 𝑊

𝑟

?
(18)

(IP4) If the composite rectangle (𝐴𝐵) above is independent and (𝐵) is an independent pullback then (𝐴) is
independent.

(IP5) Every cospan 𝑌
𝑢−→𝑊

𝑣←− 𝑍 has a completion to a commuting square (17) that is an independent pullback.

It is an easy consequence of axioms (IP1) and (IP3) that, in any commuting diagram as below, if the right square is

independent then so is the outer kite.

•

• -

-

•

-

•
-

•

-

--

(19)

A straightforward consequence of this property in turn is that, in any independent pullback square (17), the span 𝑓 , 𝑔 is

jointly monic, i.e., for all parallel pairs 𝑠, 𝑡 : 𝑉 −→ 𝑋 , if both 𝑓 ◦ 𝑠 = 𝑓 ◦ 𝑡 and 𝑔 ◦ 𝑠 = 𝑔 ◦ 𝑡 then 𝑠 = 𝑡 .

Definition 6.2 (Descent property). We say that independent-pullback structure has the descent property if, in any

commuting diagram of the form (19) above, if the outer kite is independent then so is the right-hand square.

As a first (trivial) example of independent pullbacks, in any category C with pullbacks the collection of all commuting

squares defines an independent pullback structure on C satisfying the descent property, for which the independent

pullbacks are exactly the pullbacks. The category Sur (which does not have pullbacks) provides a nontrivial example.

Definition 6.3 (Independent square in Sur). Define a commuting square in Sur

Ω𝑋
𝑝- Ω𝑌

Ω𝑍

𝑞

?
𝑠- Ω𝑊

𝑟

?
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to be independent if 𝑝 ⊥⊥𝑞 | 𝑟 ◦ 𝑝 , using conditional independence of nondeterministic variables (Definition 2.2).

Proposition 6.4. Definition 6.3 endows Sur with independent pullback structure satisfying the descent property.

Proof. Because the square is commuting and the maps are surjective, the condition of Definition 2.2 simplifies

to: for all 𝜔𝑌 ∈ Ω𝑌 and 𝜔𝑍 ∈ Ω𝑍 , we have 𝑟 (𝜔𝑌 ) = 𝑠 (𝜔𝑍 ) implies there exists 𝜔𝑋 ∈ Ω𝑋 such that 𝑝 (𝜔𝑋 ) = 𝜔𝑌 and

𝑞(𝜔𝑋 ) = 𝜔𝑍 .

The easy verification of properties (IP1) and (IP2) is left to the reader.

For (IP3), suppose (A) and (B) in diagram (18) are independent.We show that 𝑡◦𝑠 ⊥⊥ 𝑝 | 𝑟◦𝑡◦𝑠 , using the characterisation
above. Accordingly, suppose 𝜔𝑍 ∈ Ω𝑍 and 𝜔𝑈 ∈ Ω𝑈 are such that 𝑟 (𝜔𝑍 ) = 𝑣 (𝑢 (𝜔𝑈 )). We need to find 𝜔𝑋 ∈ Ω𝑋 such

that 𝑡 (𝑠 (𝜔𝑋 )) = 𝜔𝑍 and 𝑝 (𝜔𝑋 ) = 𝜔𝑈 . Because 𝑟 (𝜔𝑍 ) = 𝑣 (𝑢 (𝜔𝑈 )), the independence of (B) gives us 𝜔𝑌 ∈ Ω𝑌 such that

𝑡 (𝜔𝑌 ) = 𝜔𝑍 and 𝑞(𝜔𝑌 ) = 𝑢 (𝜔𝑈 ). By the latter equation and the independence of (A), there exists 𝜔𝑋 ∈ Ω𝑋 such that

𝑠 (𝜔𝑋 ) = 𝜔𝑌 and 𝑝 (𝜔𝑍 ) = 𝜔𝑈 . We then have 𝑡 (𝑠 (𝜔𝑋 )) = 𝑡 (𝜔𝑌 ) = 𝜔𝑍 as required.

For (IP4), we verify the stronger property that if the composite rectangle (AB) in diagram (18) is independent and if 𝑡, 𝑞

are jointly monic then (A) is independent. In the category Sur the joint monicity of 𝑡, 𝑞 means that, for all 𝜔𝑌 , 𝜔
′
𝑌
∈ Ω𝑌 ,

if both 𝑡 (𝜔𝑌 ) = 𝑡 (𝜔 ′
𝑌
) and 𝑞(𝜔𝑌 ) = 𝑞(𝜔 ′

𝑌
) then 𝜔𝑌 = 𝜔 ′

𝑌
. To prove that (A) is independent, suppose 𝜔𝑌 ∈ Ω𝑌 and

𝜔𝑈 ∈ Ω𝑈 are such that 𝑞(𝜔𝑌 ) = 𝑢 (𝜔𝑈 ). Then 𝑟 (𝑡 (𝜔𝑌 )) = 𝑣 (𝑞(𝜔𝑌 )) = 𝑣 (𝑢 (𝜔𝑈 )). So, by the independence of (AB), there
exists 𝜔𝑋 ∈ Ω𝑋 such that 𝑡 (𝑠 (𝜔𝑋 )) = 𝑡 (𝜔𝑌 ) and 𝑝 (𝜔𝑋 ) = 𝜔𝑈 . We then have 𝑞(𝑠 (𝜔𝑋 )) = 𝑢 (𝑝 (𝜔𝑋 )) = 𝑢 (𝜔𝑈 ) = 𝑞(𝜔𝑌 ).
It follows, by the joint monicity of 𝑡, 𝑞, that 𝑠 (𝜔𝑋 ) = 𝜔𝑌 . Together with the equation 𝑝 (𝜔𝑋 ) = 𝜔𝑈 , this verifies the

independence of (A).

For (IP5), the construction in the proof of Proposition 3.5 completes any cospan to an independent pullback square,

as is easily verified.

We leave the straightforward verification of the descent property to the reader. □

A more abstract way of describing the independent pullback structure on Sur is that a commuting square in Sur is

independent if and only if it is a weak
2
pullback in Set, and it is an independent pullback if and only if it is a pullback

in Set. One can use this to give a more abstract verification that (IP1)–(IP5) and descent hold.

We end this section with some general consequences of the definition of independent pullback structure. The first

such consequence is that an analogue of the pullback lemma holds for independent pullbacks.

Lemma 6.5 (Independent-pullback lemma). Suppose C has independent pullback structure.

(1) If (𝐴) and (𝐵) in (18) are both independent pullbacks then so is the composite rectangle (𝐴𝐵).
(2) If (𝐵) and the composite rectangle (𝐴𝐵) in (18) are both independent pullbacks then so is (𝐴).

Proof. The proof has the same structure as that of the standard pullback lemma, with the additional burden of

having to verify that various commuting squares are independent. We give the proof of statement 1 insofar as it involves

independence properties, leaving the standard uniqueness argument and the proof of statement 2 to the reader.

Suppose (A) and (B) are independent pullbacks. We need to verify that (AB) is an independent pullback. Accordingly,

suppose that 𝑧 : 𝑇 −→ 𝑍 and𝑤 : 𝑇 −→ 𝑈 are such that the top square i the diagram below is independent. We need to

2
A weak limit is a cone that enjoys the existence property but not necessarily the uniqueness property of a limit.
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show that there exists a unique map 𝑥 : 𝑇 −→ 𝑋 such that 𝑝 ◦ 𝑥 = 𝑤 and 𝑡 ◦ 𝑠 ◦ 𝑥 = 𝑧.

𝑇
𝑧- 𝑍

𝑈

𝑤

?
𝑣◦𝑢- 𝑊

𝑟

?

𝑉

𝑢

?

𝑣
- 𝑊

id𝑊
?

By axioms (IP1) and (IP2), the bottom square above is independent, hence, by (IP2) and (IP3), so is the composite

rectange. Since (B) is an independent pullback, there exists a unique 𝑦 : 𝑇 −→ 𝑌 such that 𝑡 ◦ 𝑦 = 𝑧 and 𝑞 ◦ 𝑦 = 𝑢 ◦𝑤 .

This means that the top square in the diagram above factorises as

𝑇
𝑦- 𝑌

𝑡- 𝑍

𝑈

𝑤

?
𝑢- 𝑉

𝑞

?
𝑣- 𝑊

𝑟

?

Since the composite rectangle is independent and the right-hand square is (B), which is an independent pullback, the

left-hand square is independent by (IP4). Since (A) is an independent pullback, there exists a unique 𝑥 : 𝑇 −→ 𝑋 such

that 𝑝 ◦ 𝑥 = 𝑤 and 𝑠 ◦ 𝑥 = 𝑦, whence 𝑡 ◦ 𝑠 ◦ 𝑥 = 𝑡 ◦ 𝑦 = 𝑧. The proof that 𝑥 is the unique map satisfying 𝑝 ◦ 𝑥 = 𝑤 and

𝑡 ◦ 𝑠 ◦ 𝑥 = 𝑧 then proceeds as usual. □

By axiom (IP5), any category with independent pullbacks is a fortiori coconfluent, hence we can consider the category

Shat (C) of atomic sheaves, for small such C. The remaining results in this section demonstrate a pleasing interplay

between atomic sheaves and independent pullback structure. They are aimed at readers who are interested in the

general category-theoretic framework. Readers keen to arrive at the atomic sheaf logic of conditional independence

may prefer to skip to the next section.

Theorem 6.6. Suppose C is a small category with independent pullback structure. The following are equivalent, for

every 𝑃 ∈ Psh(C).

(1) 𝑃 is an atomic sheaf.

(2) 𝑃 maps independent squares in C to pullbacks in Set.

Note that, by contravariance, 𝑃 maps an independent square of the form (17) to a pullback square in Set with apex 𝑃𝑊 .

The proof of Theorem 6.6 is an adaptation to the axiomatic structure of independent pullbacks of a standard argument

(see, e.g., [23, A 2.1.11(h)]) that sheaves in the Schanuel topos can be characterised as pullback preserving functors from

the category I of finite sets and injective functions to Set.

Proof. For the (1)⇒ (2) implication, suppose that 𝑃 is an atomic sheaf. We first show that 𝑃 maps independent

pullbacks in C to pullbacks in Set. Consider any independent pullback of the form (17). We need to show that the square
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below is a pullback in Set.

𝑃 (𝑋 ) �(−) ·𝑓 𝑃 (𝑌 )

𝑃 (𝑍 )

(−) ·𝑔 6

�
(−) ·𝑣 𝑃 (𝑊 )

(−) ·𝑢6

Accordingly, let 𝑦 ∈ 𝑃 (𝑌 ) and 𝑧 ∈ 𝑃 (𝑍 ) be such that 𝑦 · 𝑓 = 𝑧 · 𝑔. We need to show that there exists a unique𝑤 ∈ 𝑃 (𝑊 )
such that𝑤 · 𝑢 = 𝑦 and𝑤 · 𝑣 = 𝑧.

We show that 𝑧 is 𝑣-invariant. Let 𝑠, 𝑡 : 𝑇 - 𝑍 be such that 𝑣 ◦ 𝑠 = 𝑣 ◦ 𝑡 . By the independent-pullback lemma,

we can construct an independent pullback of 𝑢 along 𝑣 ◦ 𝑠 = 𝑣 ◦ 𝑡 , either by composing the independent pullback (17)

with the independent pullback of 𝑔 along 𝑠 , or by composing (17) with the independent pullback of 𝑔 along 𝑡 . By a

straightforward argument, this means the independent pullbacks of 𝑔 along 𝑠 and 𝑡 can be given the same left edge 𝑔′

as in the diagram below, which comprises three independent pullback squares (one with 𝑓 and 𝑣 , one with 𝑠′ and 𝑠 and

one with 𝑡 ′ and 𝑡 ).

𝑆
𝑠′-
𝑡 ′
- 𝑋

𝑓- 𝑌

𝑇

𝑔′

? 𝑠-
𝑡
- 𝑍

𝑔

?

𝑣
- 𝑊

𝑢

?

We have:

𝑧 · 𝑠 · 𝑔′ = 𝑧 · 𝑔 · 𝑠′ = 𝑦 · 𝑓 · 𝑠′ = 𝑦 · 𝑓 · 𝑡 ′ = 𝑧 · 𝑔 · 𝑡 ′ = 𝑧 · 𝑡 · 𝑔′ .

Since 𝑃 is separated (Definition 3.9) it follows that 𝑧 · 𝑠 = 𝑧 · 𝑡 . Thus 𝑧 is indeed 𝑣-invariant.
By the sheaf property there exists𝑤 ∈ 𝑃 (𝑊 ) such that 𝑧 = 𝑤 · 𝑣 . Then:

𝑤 · 𝑢 · 𝑓 = 𝑤 · 𝑣 · 𝑔 = 𝑧 · 𝑔 = 𝑦 · 𝑓 .

So, by separatedness, we have found𝑤 such that𝑤 · 𝑢 = 𝑦 and𝑤 · 𝑣 = 𝑧. Such a𝑤 is unique by separatedness.

Having established that 𝑃 maps independent pullbacks in C to pullbacks in Set, we show that it more generally maps

all independent squares to pullbacks. Accordingly, suppose (17) is an independent square. By taking the independent

pullback of 𝑢 along 𝑣 , we can obtain (17) as a composite:

𝑋
𝑠- 𝑆

𝑝- 𝑌

𝑍

𝑔

?

id𝑍
- 𝑍

𝑞

?

𝑣
- 𝑊

𝑢

?

Since the right-hand square is an independent pullback, it is mapped by 𝑃 to a pullback in Set. The left-hand square is

mapped by 𝑃 to a commuting square in Set with an identity in a position that makes it a trivial pullback. Thus 𝑃 maps

the composite square (17) to a composition of pullbacks, hence to a pullback.
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For the (2) ⇒ (1) implication, let 𝑦 ∈ 𝑃 (𝑌 ) and 𝑟 : 𝑌 - 𝑋 in C be such that 𝑦 is 𝑟 -invariant. Consider an

independent pullback of 𝑟 along itself

𝑍
𝑝- 𝑌

𝑌

𝑞

?

𝑟
- 𝑋

𝑟

?

Because 𝑦 is 𝑟 -invariant, 𝑦 · 𝑝 = 𝑦 · 𝑞. By assumption, 𝑃 maps the above square to a pullback in Set. Hence, there exists a
unique 𝑥 ∈ 𝑃 (𝑋 ) such that 𝑦 = 𝑥 · 𝑟 , as required by the sheaf property. □

Corollary 6.7. The functor ay : C→ Shat (C) maps independent squares in C to pushouts in Shat (C).

Proof. This is a straightforward consequence of Theorem 6.6 on account of the bijections

Shat (ay(𝑋 ), 𝐴) � Psh(y(𝑋 ), 𝐴) � 𝐴(𝑋 ) ,

natural in 𝑋 and 𝐴, given by the left-adjoint property of the associated sheaf functor and by the Yoneda lemma.

In more detail, consider any independent square in C of the form (17). Suppose we have maps 𝛽 and 𝛾 in Shat (C)
making the outside kite below commute.

ay(𝑋 ) ay(𝑓 )- ay(𝑌 )

ay(𝑍 )

ay(𝑔)
? ay(𝑣)- ay(𝑊 )

ay(𝑢 )
?

𝐴

𝛽

-𝛼

..................
-𝛾 -

The natural bijections above mean that 𝛽 and 𝛾 correspond respectively to 𝑦 ∈ 𝐴(𝑌 ) and 𝑧 ∈ 𝐴(𝑍 ) satisfying 𝑦 · 𝑓 = 𝑔 · 𝑣 .
Since, by Theorem 6.6, 𝐴 maps the square (17) to a pullback in Set, there exists a unique𝑤 ∈ 𝐴(𝑤) such that𝑤 · 𝑢 = 𝑦

and 𝑤 · 𝑣 = 𝑧. Translating back along the natural bijections, there exists a unique map 𝛼 : ay(𝑊 ) - 𝐴 such that

𝛼 · ay(𝑢) = 𝛽 and 𝛼 · ay(𝑣) = 𝛾 , as required. □

Corollary 6.8. The following are equivalent for a small category C with independent pullbacks.

(1) Every representable presheaf is an atomic sheaf.

(2) Every independent square in C is a pushout.

Proof. For the (1) =⇒ (2) direction, suppose every representable is an atomic sheaf. Then ay and y are naturally

isomorphic, hence ay : C→ Shat (C) is full and faithful. As a fully faithful functor, ay reflects (co)limits in general, and

so pushouts in particular. Thus independent squares are pushouts in C by Corollary 6.7.

For the (2) =⇒ (1) direction, it holds from the definition of y(𝑋 ) as C(−, 𝑋 ) that every representable presheaf

y(𝑋 ) : Cop → Set maps any colimit of a 𝐷-shaped diagram in C to a limit of the induced 𝐷op
-shaped diagram in Set.

In particular, y(𝑋 ) maps pushouts in C to pullbacks in Set. So, if every independent square is a pushout in C, then

representables map independent squares to pullbacks in Set, and it follows from Theorem 6.6 that representables are

atomic sheaves. □

Manuscript submitted to ACM



1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Equivalence and Conditional Independence in Atomic Sheaf Logic 23

7 Atomic conditional independence

A main goal of this section is to define a canonical subsheaf ⊥⊥𝐴,𝐵 |𝐶 ⊆ 𝐴 × 𝐵 ×𝐶 representing a conditional indepen-

dence relation between sheaves 𝐴, 𝐵,𝐶 in atomic sheaf toposes Shat (C). To achieve this, we shall require that C have

independent pullbacks. We shall also need to assume that the sheaves 𝐴, 𝐵,𝐶 enjoy the special property of having

supports, a notion that we now define.

Definition 7.1 (Supports). A representable factorisation of an element 𝑥 ∈ 𝑃 (𝑋 ), where 𝑃 ∈ Psh(C), is given by a triple

(𝑌, 𝑞,𝑦) such that: 𝑞 : 𝑋 −→ 𝑌 is a map in C, we have 𝑦 ∈ 𝑃 (𝑌 ) and 𝑥 = 𝑦 · 𝑞. A morphism from one representable

factorisation (𝑌, 𝑞,𝑦) of 𝑥 to another (𝑌 ′, 𝑞′, 𝑦′) is given by a map 𝑟 : 𝑌 −→ 𝑌 ′ in C such that 𝑟 ◦ 𝑞 = 𝑞′ and 𝑦′ · 𝑟 = 𝑦. A

representable factorisation (𝑌, 𝑞,𝑦) is called a support for 𝑥 when it is a terminal object in the category of representable

factorisations of 𝑥 . A presheaf 𝑃 ∈ Psh(C) is said to have supports if, for every 𝑋 ∈ C, it holds that every 𝑥 ∈ 𝑃 (𝑋 ) has
a support.

For readers familiar with the category of elements
∫
𝑃 of a presheaf 𝑃 , we remark that a support for 𝑥 ∈ 𝑃 (𝑋 ) is the

same thing as a terminal object in the co-slice category (𝑋, 𝑥)/
∫
𝑃 . This elegant formulation is used as the definition of

support in [28] (there called minimal support).

Lemma 7.2. Suppose all maps in C are epimorphic and that 𝑃 ∈ Psh(C) has supports. Then, for any 𝑥 ∈ 𝑃 (𝑋 ) and map

𝑌
𝑞
−→ 𝑋 in C, a representable factorisation (𝑍, 𝑡, 𝑧) of 𝑥 is a support for 𝑥 if and only if (𝑍, 𝑡 ◦ 𝑞, 𝑧) is a support for 𝑥 · 𝑞.

Proof. Suppose (𝑍, 𝑡, 𝑧) is a support for 𝑥 . Let (𝑊,𝑢,𝑤) be a support for 𝑥 ·𝑞. Because (𝑍, 𝑡 ◦𝑞, 𝑧) is a representable
factorisation of 𝑥 · 𝑞, there exists a unique map 𝑟 : 𝑍 −→ 𝑊 that is a morphism from (𝑍, 𝑡 ◦ 𝑞, 𝑧) to (𝑊,𝑢,𝑤). Then
(𝑊, 𝑟 ◦ 𝑡,𝑤) is a representable factorisation of 𝑥 . So there exists a unique map 𝑠 :𝑊 −→ 𝑍 that is a morphism from

(𝑊, 𝑟 ◦ 𝑡,𝑤) to (𝑍, 𝑡, 𝑧). That is, 𝑟 is the unique map such that 𝑟 ◦ 𝑡 ◦ 𝑞 = 𝑢 and 𝑤 · 𝑟 = 𝑧, and 𝑠 is the unique map

such that 𝑠 ◦ 𝑟 ◦ 𝑡 = 𝑡 and 𝑧 · 𝑠 = 𝑤 . Since 𝑡 is an epi, the equation 𝑠 ◦ 𝑟 ◦ 𝑡 = 𝑡 implies 𝑠 ◦ 𝑟 = id𝑍 . Then we have

𝑡 ◦ 𝑞 = 𝑠 ◦ 𝑟 ◦ 𝑡 ◦ 𝑞 = 𝑠 ◦ 𝑢, which means that 𝑠 is a morphism of 𝑥 · 𝑞 factorisations from (𝑊,𝑢,𝑤) to (𝑍, 𝑡 ◦ 𝑞, 𝑧). So
𝑟 ◦ 𝑠 is a morphism from (𝑊,𝑢,𝑤) to itself. Since (𝑊,𝑢,𝑤) is the terminal 𝑥 · 𝑞 factorisation, 𝑟 ◦ 𝑠 = id𝑊 . Thus 𝑟 and 𝑠

are mutual inverses, and 𝑡 is an isomorphism of 𝑥 · 𝑞 factorisations from (𝑊,𝑢,𝑤) to (𝑍, 𝑡 ◦ 𝑞, 𝑧). Hence (𝑍, 𝑡 ◦ 𝑞, 𝑧) is
also a support for 𝑥 · 𝑞.

Conversely, suppose (𝑍, 𝑡 ◦ 𝑞, 𝑧) is a support for 𝑥 · 𝑞. Let (𝑉 , 𝑣,𝑤) be a representable factorisation of 𝑥 . Then

(𝑉 , 𝑣 ◦ 𝑞,𝑤) is a representable factorisation of 𝑥 · 𝑞. So there exists a unique map 𝑠 :𝑊 −→ 𝑍 that is a morphism from

(𝑉 , 𝑣 ◦ 𝑞,𝑤) to (𝑍, 𝑡 ◦ 𝑞, 𝑧), that is, 𝑠 ◦ 𝑣 ◦ 𝑝 = 𝑡 ◦ 𝑝 and 𝑧 · 𝑠 = 𝑤 . Since 𝑝 is an epi, 𝑠 ◦ 𝑣 = 𝑡 , and so 𝑠 is a (clearly unique)

morphism from (𝑉 , 𝑣,𝑤) to (𝑍, 𝑡, 𝑧). This shows that (𝑍, 𝑡, 𝑧) is a support for 𝑥 . □

We shall also require presheaves with supports to be closed under finite products. This follows from a further

property of the category C (dual to the existence ofM-images as defined in [41, §5.1]).

Definition 7.3 (Pairings). A pair factorisation of a span 𝑌
𝑓
←− 𝑋

𝑔
−→ 𝑍 in a category C is given by (𝑋 ′, 𝑞′, 𝑓 ′, 𝑔′)

where 𝑞′ : 𝑋 −→ 𝑋 ′ and 𝑌
𝑓 ′
←−− 𝑋 ′

𝑔′
−→ 𝑍 are maps in C that satisfy 𝑓 ′ ◦ 𝑞′ = 𝑓 and 𝑔′ ◦ 𝑞′ = 𝑔. A morphism from a

pair factorisation (𝑋 ′, 𝑞′, 𝑓 ′, 𝑔′) of 𝑓 , 𝑔 to another (𝑋 ′′, 𝑞′′, 𝑓 ′′, 𝑔′′) is a map 𝑟 : 𝑋 ′ → 𝑋 ′′ in C such that 𝑟 ◦ 𝑞′ = 𝑞′′,

𝑓 ′′ ◦ 𝑟 = 𝑓 ′ and 𝑔′′ ◦ 𝑟 = 𝑔′. A pair factorisation (𝑋 ′, 𝑞′, 𝑓 ′, 𝑔′) is said to be a pairing for 𝑓 , 𝑔 if it is a terminal object in

the category of pair factorisations of 𝑓 , 𝑔. We say that the category C has pairings if every span 𝑓 , 𝑔 has a pairing.

Proposition 7.4. Suppose all maps in C are epimorphic and that C has pairings. If 𝑃,𝑄 ∈ Psh(C) both have supports,

then so does the product 𝑃 ×𝑄 .
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Proof. Consider any element (𝑥,𝑦) ∈ (𝑃 ×𝑄) (𝑋 ). Let (𝑈 ,𝑢, 𝑥 ′) be support for 𝑥 and (𝑉 , 𝑣,𝑦′) support for 𝑦. Let
(𝑊,𝑤,𝑢′, 𝑣 ′) be a pairing for 𝑢, 𝑣 . We show that (𝑊,𝑤, (𝑥 ′ · 𝑢′, 𝑦′ · 𝑣 ′)) is support for (𝑥,𝑦).

Let (𝑍, 𝑡, (𝑥 ′′, 𝑦′′)) be any representable factorisation of (𝑥,𝑦). Then (𝑍, 𝑡, 𝑥 ′′) is a representable factorisation of 𝑥 ,

so there exists a unique map 𝑟 : 𝑍 - 𝑈 that is a morphism from (𝑍, 𝑡, 𝑥 ′′) to (𝑈 ,𝑢, 𝑥 ′), i.e., such that 𝑟 ◦ 𝑡 = 𝑢 and

𝑥 ′ · 𝑟 = 𝑥 ′′. Similarly, there exists a unique map 𝑠 : 𝑍 - 𝑉 such that 𝑠 ◦ 𝑡 = 𝑣 and 𝑦′ · 𝑠 = 𝑦′′. Since (𝑋, 𝑡, 𝑟, 𝑠) is a pair
factorisation of 𝑢, 𝑣 , there exists a unique𝑤 ′ : 𝑍 −→𝑊 such that𝑤 ′ ◦ 𝑡 = 𝑤 and 𝑢′ ◦𝑤 ′ = 𝑟 and 𝑣 ′ ◦𝑤 ′ = 𝑠 . We claim

that𝑤 ′ : 𝑍 −→𝑊 is the unique morphism from (𝑍, 𝑡, (𝑥 ′′, 𝑦′′)) to (𝑊,𝑤, (𝑥 ′ · 𝑢′, 𝑦′ · 𝑣 ′)). We have seen that𝑤 ′ ◦ 𝑡 = 𝑤 .

Since 𝑡 is epimorphic, this determines𝑤 ′ uniquely. It also holds that 𝑥 ′ ·𝑢′ ·𝑤 ′ = 𝑥 ′ · 𝑟 = 𝑥 ′′ and 𝑦′ · 𝑣 ′ ·𝑤 ′ = 𝑦′ · 𝑠 = 𝑦′′.

So𝑤 ′ is indeed a morphism of representable factorisations. □

We explore the above properties in the case of our running example Shat (Sur).

Proposition 7.5. In Shat (Sur) every sheaf of the form NV(𝐴) has supports.

Proof. Consider any 𝑋 ∈ NV(𝐴) (Ω), i.e., 𝑋 : Ω → 𝐴. Factorise 𝑋 as a composite Ω
𝑝
−→ Ω′

𝑋 ′−−→ 𝐴 where 𝑝 is

surjective and 𝑋 ′ injective. It is easy to verify that (Ω′, 𝑝, 𝑋 ′) is a support for 𝑋 . □

Proposition 7.6. The category Sur has pairings.

Proof. Consider a span Ω𝑌

𝑝
←− Ω

𝑞
−→ Ω𝑍 in Sur. Factorise the function (𝑝, 𝑞) : Ω → Ω𝑌 × Ω𝑍 as Ω

𝑟−→ Ω′
(𝑝′,𝑞′ )
−−−−−−→

Ω𝑌 × Ω𝑍 where 𝑟 is surjective and (𝑝′, 𝑞′) injective. Then (Ω′, 𝑟 , 𝑝′, 𝑞′) is a pairing of 𝑝, 𝑞. □

Proposition 7.5 is in fact subsumed by a much more general result, which however has a far more involved proof..

Theorem 7.7. In Shat (Sur) every sheaf has supports.

Because this theorem is not central to the development, we relegate its proof to Appendix A

We henceforth impose global assumptions on our category C.

Definition 7.8. We say that a small category C has the requisite structure if: every map in C is an epimorphism, it has

pairings, and it has independent-pullback structure satisfying the descent property.

The reason for imposing the assumption that every map is an epimorphism is that it allows us to apply Lemma 7.2 and

Proposition 7.4. Because the role of C is to serve as the gateway to the category ShatC of atomic sheaves, this assumption

is very mild. As discussed at the end of Section 3, it is weaker than assuming that all representable presheaves are

atomic sheaves. Moreover, every atomic sheaf topos is equivalent to ShatC for some coconfluent small category C in

which every map is an epimorphism.

Since it is obvious that every map in Sur is epimorphic, Propositions 7.6 and 6.4 show that the category Sur has the

requisite structure.

For the remainder of the present section, let C be a small category with the requisite structure.
We define a general atomic conditional independence relation for atomic sheaves 𝐴, 𝐵,𝐶 on C with supports. For any

𝑋 ∈ C, define

⊥⊥𝐴,𝐵 |𝐶 (𝑋 ) ⊆ (𝐴 × 𝐵 ×𝐶) (𝑋 ) (20)

to consist of those triples (𝑥,𝑦, 𝑧) ∈ (𝐴 × 𝐵 × 𝐶) (𝑋 ) that satisfy the condition: there exists an independent square

𝑟 ◦ 𝑝 = 𝑠 ◦𝑞 in C (as in the diagram below), and there exist elements (𝑥 ′, 𝑢′) ∈ (𝐴 ×𝐶) (𝑋𝑥 ), and (𝑦′, 𝑣 ′) ∈ (𝐴 ×𝐶) (𝑋𝑦)
and 𝑧′ ∈ 𝐶 (𝑋𝑧) such that 𝑥 ′ · 𝑝 = 𝑥 and 𝑦′ · 𝑞 = 𝑦 and 𝑧′ · 𝑟 = 𝑢′ and 𝑧′ · 𝑠 = 𝑣 ′ and (𝑋𝑧 , 𝑟 ◦ 𝑝, 𝑧′) is support for 𝑧. The
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data in the condition above is illustrated by the hybrid diagram below, where the symbol ⊥⊥ indicates that the square is

independent.

𝑋
𝑝- 𝑋𝑥

(𝑥 ′,𝑢′ )- 𝐴 ×𝐶

⊥⊥

𝑋𝑦

𝑞

?

𝑠
- 𝑋𝑧

𝑟

?

𝐵 ×𝐶

(𝑦′,𝑣′ )
?

𝜋2

- 𝐶

𝜋2

?𝑧′ -

(21)

The above diagram is hybrid in the sense that the arrows in it represent three distinct kinds of entity. Arrows of the

form 𝑋 −→ 𝑌 between objects of C represent maps in C. Arrows of the form 𝑋 −→ 𝐴, from an object 𝑋 of C to a sheaf 𝐴,

represent elements of the set 𝐴(𝑋 ). Arrows of the form 𝐴 −→ 𝐵 between sheaves represent maps in Shat (C). By the

Yoneda lemma, such hybrid diagrams can equivalently be interpreted as ordinary diagrams in the presheaf category

Psh(C), with objects 𝑋 of C being interpreted as representable presheaves y𝑋 .

Lemma 7.9. In the definition of ⊥⊥𝐴,𝐵 |𝐶 (𝑋 ), we can, without loss of generality, choose the data so that (𝑋𝑥 , 𝑝, (𝑥 ′, 𝑢′)) is
support for (𝑥, 𝑧) and (𝑋𝑦, 𝑞, (𝑦′, 𝑣 ′)) is support for (𝑦, 𝑧).

Proof. Suppose we have:

𝑋
𝑝- 𝑋𝑥

(𝑥 ′,𝑢′ )- 𝐴 ×𝐶

⊥⊥

𝑋𝑦

𝑞

?

𝑠
- 𝑋𝑧

𝑟

?

𝑧′
- 𝐶

𝜋2

?
(22)

where (𝑋𝑧 , 𝑟 ◦ 𝑝, 𝑧′) is a support for 𝑧. Let (𝑋 ′𝑥 , 𝑡, (𝑥 ′′, 𝑢′′)) be support for (𝑥 ′, 𝑢′) ∈ (𝐴 ×𝐶) (𝑋𝑥 ). Then (𝑋 ′𝑥 , 𝑡, 𝑢′′) is a
representable factorisation of 𝑧′ · 𝑟 . By Lemma 7.2, (𝑋𝑧 , 𝑟 , 𝑧

′) is a support for 𝑧′ · 𝑟 . So there exists 𝑟 ′ : 𝑋 ′𝑥 → 𝑋𝑧 such

that 𝑟 ′ ◦ 𝑡 = 𝑟 and 𝑧′ · 𝑟 ′ = 𝑢′′. We have thus obtained the data in the hybrid diagram below.

𝑋
𝑝- 𝑋𝑥

𝑡- 𝑋 ′𝑥
(𝑥 ′′,𝑢′′ )- 𝐴 ×𝐶

⊥⊥ ⊥⊥

𝑋𝑦

𝑞

?

𝑠
- 𝑋𝑧

𝑟

?

id𝑋𝑧

- 𝑋𝑧

𝑟 ′

?

𝑧′
- 𝐶

𝜋2

?
(23)

Morover, by Lemma 7.2, it holds that (𝑋 ′𝑥 , 𝑡 ◦ 𝑝, (𝑥 ′′, 𝑢′′)) is support for (𝑥 ′, 𝑢′) · 𝑝 = (𝑥, 𝑧). We have thus shown

how diagram (22), gives rise to diagram (23), in which the composite independent square satisfies the desired support

property for (𝑥, 𝑧).
By starting with the new diagram and repeating the same argument in a vertical rather than horizontal direction,

one similarly satisfies the required support property for (𝑦, 𝑧). □

Theorem 7.10. Suppose𝐴, 𝐵,𝐶 are atomic sheaves with supports. Then ⊥⊥𝐴,𝐵 |𝐶 (𝑋 ) ⊆ (𝐴×𝐵×𝐶) (𝑋 ) defines a subsheaf
via Prop. 4.3.

Proof of Theorem 7.10. We first show that ⊥⊥𝐴,𝐵 |𝐶 is a subpresheaf. Suppose (𝑥,𝑦, 𝑧) ∈ ⊥⊥𝐴,𝐵 |𝐶 (𝑋 ) and 𝑡 :

𝑌 - 𝑋 is a map in S; that is, we have the data in diagram (21) and (𝑋𝑧 , 𝑟 ◦ 𝑝, 𝑧′) is a support for 𝑧. We need
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to show that (𝑥 · 𝑟, 𝑦 · 𝑟, 𝑧 · 𝑟 ) ∈ ⊥⊥𝐴,𝐵 |𝐶 (𝑌 ). This holds on account of the data illustrated below.

𝑌
𝑝◦𝑡- 𝑋𝑥

(𝑥 ′,𝑢′ )- 𝐴 ×𝐶

⊥⊥

𝑋𝑦

𝑞◦𝑡
?

𝑠
- 𝑋𝑧

𝑟

?

𝐵 ×𝐶

(𝑦′,𝑣′ )
?

𝜋2

- 𝐶

𝜋2

?𝑧′ -

Indeed, (𝑋𝑧 , 𝑟 ◦ 𝑝 ◦ 𝑡, 𝑧′) is support for 𝑧 ◦ 𝑟 on account of Lemma 7.2, and the marked square is independent since it is

a composition of two independent squares:

𝑌
𝑡- 𝑋

𝑝- 𝑋𝑥

⊥⊥ ⊥⊥

𝑋𝑦

𝑞◦𝑡
?

id𝑋𝑦

- 𝑋𝑦

𝑞

?

𝑠
- 𝑋𝑧

𝑟

?

For the subsheaf property, suppose (𝑥,𝑦, 𝑧) ∈ (𝐴×𝐵 ×𝐶) (𝑋 ) and (𝑥 · 𝑡, 𝑦 · 𝑡, 𝑧 · 𝑡) ∈ ⊥⊥𝐴,𝐵 |𝐶 (𝑌 ) where 𝑡 : 𝑌 - 𝑋

is a map in S. We need to show that (𝑥,𝑦, 𝑧) ∈ ⊥⊥𝐴,𝐵 |𝐶 (𝑋 ).
The assumption gives us the data below

𝑌
𝑝′- 𝑋𝑥

(𝑥 ′,𝑢′ )- 𝐴 ×𝐶

⊥⊥

𝑋𝑦

𝑞′

?

𝑠
- 𝑋𝑧

𝑟

?

𝐵 ×𝐶

(𝑦′,𝑣′ )
?

𝜋2

- 𝐶

𝜋2

?𝑧′ -

where, 𝑥 ′ · 𝑝′ = 𝑥 · 𝑡 and 𝑦′ · 𝑞′ = 𝑦 · 𝑡 and (𝑋𝑧 , 𝑟 ◦ 𝑝′, 𝑧′) is support for 𝑧 · 𝑡 . By Lemma 7.9, we can assume that

(𝑋𝑥 , 𝑝
′, (𝑥 ′, 𝑢′)) is support for (𝑥 ·𝑡, 𝑧 ·𝑡) and (𝑋𝑦, 𝑞

′, (𝑦′, 𝑣 ′)) is support for (𝑦 ·𝑡, 𝑧 ·𝑡). Since (𝑋, 𝑡, (𝑥, 𝑧)) is a representable
factorisation of (𝑥 · 𝑡, 𝑧 · 𝑡), we have 𝑝′ = 𝑝 ◦ 𝑡 and (𝑥, 𝑧) = (𝑥 ′ · 𝑝, 𝑢′ · 𝑝), for some 𝑝 : 𝑋 - 𝑋𝑥 . Similarly, 𝑞′ = 𝑞 ◦ 𝑡
and (𝑦, 𝑧) = (𝑦′ · 𝑞, 𝑣 ′ · 𝑞), for some 𝑞 : 𝑋 - 𝑋𝑦 . Then

𝑟 ◦ 𝑝 ◦ 𝑡 = 𝑡 ◦ 𝑝′ = 𝑠 ◦ 𝑞′ = 𝑠 ◦ 𝑞 ◦ 𝑡 .

Since 𝑡 is epimorphic, 𝑟 ◦ 𝑝 = 𝑠 ◦ 𝑞 is a commuting square, which is independent by the descent property. Accordingly,

we have precisely the data in diagram (21). Moreover, since (𝑋𝑧 , 𝑟 ◦ 𝑝 ◦ 𝑡, 𝑧′) = (𝑋𝑧 , 𝑟 ◦ 𝑝′, 𝑧′) is support for 𝑧 · 𝑡 , it
follows from Lemma 7.2 that (𝑋𝑧 , 𝑟 ◦ 𝑝, 𝑧′) is support for 𝑧, as required. □

In the special case of sheaves NV(𝐴) of nondeterministic variables in Shat (Sur), the general atomic conditional

independence defined above coincides with the multiteam conditional independence from Proposition 4.5.

Proposition 7.11. The subsheaf

⊥⊥NV(𝐴),NV(𝐵) |NV(𝐶 ) ⊆ NV(𝐴) × NV(𝐵) × NV(𝐶)
Manuscript submitted to ACM
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in Shat (Sur) coincides with ⊥⊥𝐴,𝐵 |𝐶 ⊆ NV(𝐴) × NV(𝐵) × NV(𝐶) from Proposition 4.5.

Proof. Suppose 𝑋 : Ω → 𝐴, 𝑌 : Ω → 𝐵, 𝑍 : Ω → 𝐶 are nondeterministic variables such that 𝑋 ⊥⊥𝑌 | 𝑍 , according
to Definition 2.2. Define

Ω𝑋 := {(𝑥, 𝑧) ∈ 𝐴 ×𝐶 | ∃𝜔 ∈ Ω. 𝑥 = 𝑋 (𝜔) and 𝑧 = 𝑍 (𝜔)}

Ω𝑌 := {(𝑦, 𝑧) ∈ 𝐵 ×𝐶 | ∃𝜔 ∈ Ω. 𝑦 = 𝑌 (𝜔) and 𝑧 = 𝑍 (𝜔)}

Ω𝑍 := 𝑍 (Ω)

Then the hybrid diagram below, shows that (𝑋,𝑌, 𝑍 ) belongs to the atomic conditional independence⊥⊥NV(𝐴),NV(𝐵) |NV(𝐶 ) (Ω),
since (Ω𝑍 , 𝑍, 𝑧 ↦→ 𝑧) is support for 𝑍 , by the definition of Ω𝑍 .

Ω
(𝑋,𝑍 )- Ω𝑋

(𝑥,𝑧 ) ↦→(𝑥,𝑧 )- NV(𝐴) × NV(𝐶)

⊥⊥

Ω𝑌

(𝑌,𝑍 )
?

𝜋2

- Ω𝑍

𝜋2

?

NV(𝐵) × NV(𝐶)

(𝑦,𝑧 ) ↦→(𝑦,𝑧 )
?

𝜋2

- NV(𝐶)

𝜋2

?

𝑧 ↦→𝑧

-

Conversely, suppose (𝑋,𝑌, 𝑍 ) ∈ ⊥⊥NV(𝐴),NV(𝐵) |NV(𝐶 ) (Ω). That is, we have the data in the hybrid diagram below,

where 𝑋 ′ · 𝑝 = 𝑋 and 𝑌 ′ · 𝑞 = 𝑌 and (Ω𝑍 , 𝑟 ◦ 𝑝, 𝑍 ′) is support for 𝑍 .

Ω
𝑝- Ω𝑋

(𝑋 ′,𝑈 ′ )- NV(𝐴) × NV(𝐶)

⊥⊥

Ω𝑌

𝑞

?

𝑠
- Ω𝑍

𝑟

?

NV(𝐵) × NV(𝐶)

(𝑌 ′,𝑉 ′ )
?

𝜋2

- NV(𝐶)

𝜋2

?𝑍 ′ -

We show that 𝑋 ⊥⊥𝑌 | 𝑍 , according to Definition 2.2. Suppose we have 𝜔 ′, 𝜔′′ ∈ Ω such that 𝑋 (𝜔 ′) = 𝑎 and 𝑍 (𝜔 ′) = 𝑐

and 𝑌 (𝜔 ′′) = 𝑏 and 𝑍 (𝜔 ′′) = 𝑐 . Then

𝑍 ′ (𝑟 (𝑝 (𝜔 ′))) = 𝑍 (𝜔 ′) = 𝑍 (𝜔 ′′) = 𝑍 ′ (𝑠 (𝑞(𝜔 ′′))) .

Since (Ω𝑍 , 𝑟 ◦ 𝑝, 𝑍 ′) is support for 𝑍 , the function 𝑍 ′ : Ω𝑍 → 𝐶 is injective, hence 𝑟 (𝑝 (𝜔 ′)) = 𝑠 (𝑞(𝜔 ′′)). Since the
top-left square is independent, there exists𝜔 ∈ Ω such that 𝑝 (𝜔) = 𝑝 (𝜔 ′) and 𝑞(𝜔) = 𝑞(𝜔 ′′). Then𝑋 (𝜔) = 𝑋 ′ (𝑝 (𝜔)) =
𝑋 ′ (𝑝 (𝜔 ′)) = 𝑋 (𝜔 ′) = 𝑎. Similarly, 𝑌 (𝜔) = 𝑏, and 𝑍 (𝜔) = 𝑐 . □

We now turn to the extension of the atomic sheaf logic of Sections 4 and 5 with conditional independence formulas (2).

Once again, we view this extension as being obtained by including a family of relation symbols. In this case we add

relations ⊥®A,®B | ®C, and require that each such relation is interpreted as the subsheaf

⊥⊥®A,®B | ®C ⊆ ®A × ®B × ®C ,

Manuscript submitted to ACM



1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Alex Simpson

®x⊥ ®y | ®z → 𝜋 (®x) ⊥𝜋 ′ (®y) | 𝜋 ′′ (®z) (24)

®x⊥ ®y | ®y (25)

®x⊥ ®y | ®z → ®y⊥®x | ®z (26)

®x⊥ ®y, ®z | ®w → ®x⊥ ®y | ®w (27)

®x⊥ ®y, ®z | ®w → ®x⊥ ®y | ®z, ®w (28)

®x⊥ ®y | ®z, ®w ∧ ®x⊥®z | ®w → ®x⊥ ®y, ®z | ®w (29)

∃®y. (®y, ®w ∼ ®x, ®w ∧ ®y⊥®z | ®w) (30)

Fig. 4. Axioms for conditional independence

where we write, e.g., ®A for the product

∏𝑛
𝑖=1 A𝑛 , where ®A is the vector of sorts A1, . . . ,A𝑛 . To ensure that ⊥⊥®A,®B | ®C is well

defined, we require that every sort A is interpreted as a sheaf A with supports.

Figure 4 lists formulas valid in this semantics that we single out as a suitable list of axioms for reasoning about

conditional independence. Axiom (24) asserts that conditional independence is preserved under permutations within

each of the three lists of variables involved. This axiom, together with axioms (25)–(29) are all standard axioms for

conditional independence, appearing in closely related forms in [7, Theorem 3.1 and Lemmas 4.1–4.3], in [40, Theorem 1]

and in the work of Pearl, Paz and Geiger [15, 16, 33] (in which only conditional independence statements of the restricted

form ®x⊥ ®y | ®z for three disjoint sets of variables ®x, ®y and ®z are considered). The axioms appear more explicitly in their

present form in Dawid’s axioms for the notion of separoid [8]. We leave the straightforward verification of the soundness

of axioms (24)–(27) to the reader. The soundness of axioms (28) and (29) is more technical. To avoid encumbering the

main development with these technical proofs, they are given in Appendix B.

Whereas axioms (24)–(29) concern conditional independence in isolation, axiom (30) captures the interaction between

conditional independence and atomic equivalence. Axiom (30) makes essential use of the existential quantifier of atomic

sheaf logic to capture a key first-order property: given variables ®x, ®z, ®w one can always find variables ®y that are

conditionally independent from ®z given ®w, but such that ®y, ®w is jointly equivalent to ®x, ®w. We call this property the

independent existence principle: independent variables with any desired distribution always exist. The validity of the

principle of independent existence (30) is established by Lemma 7.12 below.

Lemma 7.12. Given 𝑥 ∈ 𝐴(𝑋 ), 𝑧 ∈ 𝐵(𝑋 ) and𝑤 ∈ 𝐶 (𝑋 ), there exist 𝑝 : 𝑌 −→ 𝑋 and 𝑦 ∈ 𝐴(𝑌 ) such that

((𝑦, 𝑤 · 𝑝), (𝑥 · 𝑝, 𝑤 · 𝑝)) ∈ ∼𝐴×𝐶 (𝑌 ) (31)

(𝑦, 𝑧 · 𝑝, 𝑤 · 𝑝) ∈ ⊥⊥𝐴,𝐵 |𝐶 (𝑌 ) . (32)

Proof. Let (𝑍, 𝑠,𝑤 ′) be support for𝑤 , and consider the independent pullback of 𝑠 : 𝑋 → 𝑍 along itself:

𝑌
𝑝- 𝑋

𝑋

𝑞

?

𝑠
- 𝑍

𝑠

?

We have:

𝑤 · 𝑝 = 𝑤 ′ · 𝑠 · 𝑝 = 𝑤 ′ · 𝑠 · 𝑞 = 𝑤 · 𝑞 .
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Define 𝑦 := 𝑥 · 𝑞.
By the independent pullback above, there is a unique map 𝑡 : 𝑌 → 𝑌 such that 𝑝 ◦ 𝑡 = 𝑞 and 𝑞 ◦ 𝑡 = 𝑝 . So:

(𝑦, 𝑤 · 𝑝) = (𝑥 · 𝑞, 𝑤 · 𝑞) = (𝑥 · 𝑝 ◦ 𝑡, 𝑤 ◦ 𝑝 ◦ 𝑡) .

Thus the pair id𝑌 , 𝑡 : 𝑌 −→ 𝑌 shows that (31) holds.

For the independence statement, we have:

𝑌
𝑞- 𝑋

(𝑥,𝑤 )- 𝐴 ×𝐶

⊥⊥

𝑋

𝑝

?

𝑠
- 𝑍

𝑠

?

𝐵 ×𝐶

(𝑧,𝑤 )
?

𝜋2

- 𝐶

𝜋2

?𝑤′ -

The first component of the top side is 𝑥 · 𝑞 = 𝑦 ∈ 𝐴(𝑌 ). The first component of the left side is 𝑧 · 𝑝 ∈ 𝐵(𝑌 ). Moreover, by

Lemma 7.2, (𝑍, 𝑠 ◦ 𝑝, 𝑤 ′) is support for𝑤 · 𝑝 . Thus we indeed have (32). □

As an interesting consequence of the axioms, we prove that existence properties are preserved under conditional

independence, in the sense of the result below. This provides a first-order reasoning principle for conditional inde-

pendence, whose scope potentially extends beyond atomic sheaf logic to more general contexts in which there is a

conditional independence relation but no analogue of the relation ∼ of atomic equivalence.

Theorem 7.13 (Existence preservation). The schema below follows from the axioms in Figs. 3 and 4.

(∃®y. Φ(®x, ®y, ®w)) → ∀®z. ( ®x⊥®z | ®w → ∃®y. ( ®x, ®y⊥®z | ®w ∧ Φ(®x, ®y, ®w)))

Here we adopt the same convention as in the invariance principle. In Φ(®x, ®y, ®w) every free variable in Φ has been substituted

by one of the variables in ®x, ®y, ®w.

Proof. Let ®y be such that

Φ(®x, ®y, ®w) . (33)

Consider any ®z. By the independent existence principle (30), there exists ®y′ such that

®y′, ®x, ®w ∼ ®y, ®x, ®w (34)

and

®y′ ⊥®z | ®x, ®w . (35)

Suppose

®x⊥®z | ®w . (36)

Then (35) and (36) combine to give ®x, ®y′ ⊥®z | ®w, by the axioms for conditional independence.

Further, (33) and (34) combine to give Φ(®x, ®y′, ®w), by the invariance principle (15). □

8 Probability sheaves

In this long section, we present another instance of our axiomatic structure: atomic sheaves over standard Borel

probability spaces. The idea is that such spaces take the role of sample spaces, and random variables over such sample
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spaces collectively form an atomic sheaf. More precisely, for any standard Borel space 𝐴, we shall obtain a sheaf RV(𝐴)
of all 𝐴-valued random variables. For this aim, the standard-Borel assumption serves three purposes. Firstly, it is

sufficiently general that it encompass both discrete and continuous probability. Secondly, it provides a small category of

sample spaces to build atomic sheaves over. Finally, it also provides useful technical machinery (such as disintegrations

of random variables), which would be unavailable in general if arbitrary probability and measurable spaces were used.

This machinery is essential in showing that the category of sample spaces has independent pullback structure. When

interpreted over the sheaves of random variables RV(𝐴), atomic sheaf logic provides logical principles governing

the relations of almost sure equality, of equality in distribution and of conditional independence with its standard

probabilistic meaning, since these three relations are respectively encapsulated as equality, atomic equivalence and

atomic conditional independence in the logic.

In order to fully understand the technical development in the present section, it is necessary to have some background

in probability and measure theory. Nevertheless, we try to also explain the main ideas informally, so help readers

without the necessary background to follow the line of development at a high level.

Standard Borel spaces will be the value spaces of random variables, and they will also be the structures over which

we build sample spaces.

Definition 8.1 (Standard Borel space). A standard Borel space (SBS) is a measurable space (𝐴,B𝐴) where 𝐴 is a Borel

subset of a Polish space 𝑇 (i.e., a complete separable metric space) and B𝐴 is the 𝜎-algebra {𝑆 ∩𝐴 | 𝑆 ⊆ 𝑇 is Borel}. A
morphism of standard Borel spaces from (𝐴,B𝐴) to (𝐵,B𝐵) is a function 𝑓 : 𝐴→ 𝐵 that ismeasurable, i.e., 𝑓 −1 (𝑆) ∈ B𝐴
for all 𝑆 ∈ B𝐵 .

When (𝐴,B𝐴) is a standard Borel space, we shall refer to the sets in B𝐴 as the Borel subsets of 𝐴, which is justified

because 𝐴 can always itself be given a Polish topology in which B𝐴 is the Borel 𝜎-algebra. As is well known, the image

𝑓 (𝐶) of a Borel subset 𝐶 ⊆ 𝐴 under a measurable function 𝑓 : 𝐴→ 𝐵, where (𝐵,B𝐵) is also standard Borel, need not

itself be a Borel subset of 𝐵, but 𝑓 (𝐶) is always an analytic subset of 𝐵.

On the one hand, the collection of standard Borel spaces is very rich, as it incorporates most measurable spaces

that arise naturally in mathematics. On the other, it is also limited, since there are only two types of standard Borel

spaces: (i) spaces (𝐴,P(𝐴)), where 𝐴 is a countable (possibly finite) set with its full powerset P(𝐴) as the 𝜎-algebra;
and (ii) spaces (𝐴,B𝐴) that are isomorphic to the real numbers with the Borel 𝜎-algebra (R,B). As a consequence
of this classification, every standard Borel space has a measurable embedding into the interval [0, 1] with the Borel

𝜎-algebra B[0,1] .
Standard Borel probability spaces will act as our sample spaces. As such, they will provide the objects of the category

of sample spaces over which we shall consider atomic sheaves.

Definition 8.2 (Standard Borel probability space). A standard Borel probability space (SBPS) is a triple (Ω,BΩ, 𝑃Ω)
where (Ω,BΩ) is an SBS and 𝑃Ω : BΩ → [0, 1] is a probability measure. A morphism of standard Borel probability

spaces from (Ω,BΩ, 𝑃Ω) to (Ω′,BΩ′ , 𝑃Ω′ ) is an SBS morphism 𝑞 from (Ω,BΩ) to (Ω′,BΩ′ ) that preserves measure; i.e.,

𝑞∗ (𝑃Ω) = 𝑃Ω′ , where 𝑞∗ (𝑃) is the pushforward measure 𝑆 ↦→ 𝑃Ω (𝑞−1 (𝑆)) : BΩ′ → [0, 1] .

As with standard Borel spaces, standard Borel probability spaces include the most common probability spaces that one

naturally encounters in mathematics. Any standard Borel probability space (Ω,BΩ, 𝑃Ω) can be decomposed uniquely

into its discrete and continuous parts, moreover the continuous part has a very constrained form. In detail, there exist

unique Borel measures 𝛿, 𝜇 : BΩ → [0, 1] such that 𝑃Ω = 𝛿 + 𝜇, the measure 𝛿 is discrete (i.e., 𝛿 (𝐵) = ∑
𝑥∈𝐵 𝛿 ({𝑥})
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for every 𝐵 ∈ BΩ), and either 𝜇 = 0 or (Ω,BΩ, 𝜇) is isomorphic, via measure-preserving functions, to the interval

( [0, 𝑐],B[0,𝑐 ] , 𝜆), where 𝑐 := 𝑃Ω (Ω), with the Borel 𝜎-algebra B[0,𝑐 ] and the (Borel restriction of) Lebesgue measure

𝜆 : B[0,𝑐 ] → [0, 𝑐].
In probability theory, a random variable is a measurable function from a probability space, called the sample space,

to a measurable space, the value space. In this paper, we restrict ourselves to the case in which these spaces are both

standard Borel. This is broad enough to incorporate both the discrete and continuous random variables arising most

commonly in mathematics.

Definition 8.3 (Random variable). If Ω is an SBPS and 𝐴 is an SBS (for notational convenience we here and henceforth

abbreviate (𝐴,B𝐴) as 𝐴 and (Ω,BΩ, 𝑃Ω) as Ω), a random variable 𝑋 : Ω → 𝐴 is a measurable function from (Ω,BΩ) to
(𝐴,B𝐴). The SBPS Ω is called the sample space of 𝑋 , and the SBS 𝐴 is called the value space.

We next define the three main relations between random variables we shall be interested in: almost-sure equality,

equidistribution and conditional independence.

In general, we say that a property of elements 𝜔 ∈ Ω holds for 𝑃Ω-almost-all 𝜔 if there exists 𝑆 ∈ BΩ with 𝑃Ω (𝑆) = 1

such that the property holds for every 𝜔 ∈ 𝑆 .

Definition 8.4 (Almost-sure equality). Two random variables 𝑋,𝑌 : Ω → 𝐴 are almost surely equal (notation 𝑋 =a.s. 𝑌 )

if 𝑋 (𝜔) = 𝑌 (𝜔) holds for 𝑃Ω-almost-all 𝜔 . (Since 𝐴 is a standard Borel space, the set {𝜔 ∈ Ω | 𝑋 (𝜔) = 𝑌 (𝜔)} is
measurable, and the above condition is equivalent to asking that 𝑃Ω ({𝜔 ∈ Ω | 𝑋 (𝜔) = 𝑌 (𝜔)}) = 1.)

The distribution (or law) of a random variable 𝑋 : Ω → 𝐴 is the probability measure 𝑃𝑋 : B𝐴 → [0, 1] defined as the

pushforward 𝑃𝑋 := 𝑋∗ (𝑃Ω).

Definition 8.5 (Equidistribution). Two random variables 𝑋,𝑌 : Ω → 𝐴 are equidistributed (notation 𝑋
𝑑
= 𝑌 ) if 𝑃𝑋 = 𝑃𝑌 .

An important consequence of only considering random variables between standard Borel spaces is that random

variables have disintegrations. We state this property as Fact 8.6 below. A proof of can be found in [10]. We mention

also that an equivalent statement to Fact 8.6 appears as Theorem 6 of [6].

Fact 8.6. Every random variable 𝑋 : Ω → 𝐴 has a disintegration; that is, a Markov kernel 𝐷𝑋 : 𝐴 × BΩ → [0, 1]

(𝑥, 𝑆) ↦→ 𝑃𝑋 −1 (𝑥 ) (𝑆) : 𝐴 × BΩ → [0, 1]

satisfying the two properties below.

(D1) 𝑃𝑋 −1 (𝑥 ) (𝑋 −1 (𝑥)) = 1 for 𝑃𝑋 -almost all 𝑥 ∈ 𝐴, and
(D2) for every 𝑆 ∈ BΩ ,

𝑃Ω (𝑆) =

∫
𝑃𝑋 −1 (𝑥 ) (𝑆) d𝑃𝑋 (𝑥) .

By the Markov kernel property, the function 𝑆 ↦→ 𝑃𝑋 −1 (𝑥 ) (𝑆) is a probability measure 𝑃𝑋 −1 (𝑥 ) : BΩ → [0, 1], for every
𝑥 ∈ 𝐴. By (D1), 𝑃𝑋 −1 (𝑥 ) can be thought of as a probability measure on the fibre set 𝑋 −1 (𝑥) ∈ BΩ , which, by (D2),

represents the conditional probability distribution on 𝜔 ∈ Ω under the condition 𝑋 (𝜔) = 𝑥 . Properties (D1) and (D2)

together characterise the mapping 𝑥 ↦→ 𝑃𝑋 −1 (𝑥 ) up to 𝑃Ω-almost-sure equality.

Exploiting disintegrations, we give a definition of conditional independence that is a transparent generalisation of

the elementary probabilistic definition of unconditional independence.
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Definition 8.7 (Conditional independence). For random variables 𝑋 : Ω → 𝐴, 𝑌 : Ω → 𝐵 and 𝑍 : Ω → 𝐶 , we say that

𝑋 and 𝑌 are conditionally independent given 𝑍 (notation 𝑋 ⊥⊥𝑌 | 𝑍 ) if, for every 𝑆 ∈ B𝐴 and 𝑇 ∈ B𝐵 , and for 𝑃𝑍 -almost

all 𝑧 ∈ 𝐶 ,

𝑃𝑍 −1 (𝑧 ) (𝑋 −1 (𝑆) ∩ 𝑌 −1 (𝑇 )) = 𝑃𝑍 −1 (𝑧 ) (𝑋 −1 (𝑆)) · 𝑃𝑍 −1 (𝑧 ) (𝑌 −1 (𝑇 )) .

Our goal in this section is to recover the three principal relations between random variables (almost-sure equality,

equidistribution and conditional independence) as the relations of equality, atomic equivalence and atomic conditional

independence in a suitable atomic sheaf topos. In order to be able to construct sheaves of random variables, the category

over which sheaves will be taken is a category of sample spaces. In fact we consider two such categories.

Definition 8.8 (The categories SBP and SBP0). We write SBP for a small category of standard Borel probability

spaces, that contains every such space up to isomorphism. We write SBP0 for the quotient category, with the same

objects, in which morphisms are equivalence classes [𝑝] of maps modulo almost-sure equality =a.s..

It is an interesting fact that one can take the category of atomic sheaves over either category, SBP or SBP0, and in

doing so one obtains equivalent categories of sheaves. Sheaves for the atomic topology on SBP were introduced in [37]

as probability sheaves. In the present paper, it will be convenient to instead take atomic sheaves over SBP0. Since the

two categories of sheaves are equivalent, we shall continue to use the name probability sheaves. The equivalence of the

two categories will be shown in a separate paper.

An important advantage of working with SBP0 is the property below, which fails for SBP.

Proposition 8.9. Every morphism in SBP0 is an epimorphism.

Proof. We first observe that every map 𝑞 : Ω −→ Ω′ in SBP is almost surjective in the sense that, for any 𝑆 ∈ BΩ
with 𝑃Ω (𝑆) = 1, there exists 𝑇 ⊆ 𝑞(𝑆) such that 𝑇 ∈ BΩ′ and 𝑃Ω′ (𝑇 ) = 1. This holds because the image 𝑞(𝑆) is an
analytic subset of Ω′ with outer measure 1. Since all analytic sets are measurable with respect to the completion of the

Borel measure 𝑃Ω′ , the image 𝑞(𝑆) also has inner measure 1, meaning that there exists 𝑇 ⊆ 𝑞(Ω) with the required

properties.

To prove that every morphism in SBP0 is epimorphic, suppose we have [𝑞] : Ω −→ Ω′ and [𝑟 ], [𝑟 ′] : Ω′ −→ Ω′′ such

that [𝑟 ] ◦ [𝑞] = [𝑟 ′] ◦ [𝑞]; i.e., 𝑟 ◦𝑞 =a.s. 𝑟
′ ◦𝑞. Let 𝑆 ⊆ Ω be Borel such that 𝑃Ω (𝑆) = 1 and (𝑟 ◦𝑞) ↾𝑆= (𝑟 ′ ◦𝑞) ↾𝑆 . By the

almost surjectivity of 𝑞, let𝑇 ⊆ 𝑞(𝑆) be such that𝑇 ∈ BΩ′ and 𝑃Ω′ (𝑇 ) = 1. Then 𝑟 ↾𝑇= 𝑟 ′ ↾𝑇 ; i.e., 𝑟 =a.s. 𝑟 ′. Equivalently

[𝑟 ] = [𝑟 ′] as required. □

Proposition 8.10. The category SBP0 has pairings.

Proof. Given any span Ω𝑌

[𝑝 ]
←−−− Ω𝑋

[𝑞 ]
−−−→ Ω𝑍 in SBP0, its pairing is given by (Ω, [(𝑝, 𝑞)], 𝜋1, 𝜋2), where Ω :=

(Ω𝑌 × Ω𝑍 ,BΩ𝑌 ×Ω𝑍
, 𝑃 (𝑝,𝑞) ) , using the product standard Borel space and the probability distribution of the paired

random variables 𝑝 and 𝑞. The properties of a pairing are easily verified, using Proposition 8.9 for uniqueness. □

Definition 8.11 (Independent square in SBP0). Define a commuting square in SBP0

(37)

to be independent if 𝑝 ⊥⊥𝑞 | 𝑟 ◦ 𝑝 , using conditional independence of random variables (Definition 8.7).
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Proposition 8.12. Definition 8.11 endows SBP0 with independent pullback structure satisfying the descent property.

The proof of Proposition 8.12, which is intricate, can be found in Appendix C. In the present section, we content

ourselves with exhibiting the construction needed to complete any cospan Ω𝑌

[𝑟 ]
−−−→ Ω𝑊

[𝑠 ]
←−−− Ω𝑍 to an independent

pullback. Using the disintegrations for 𝑟 and 𝑠 , we endow the standard Borel product (Ω𝑌 × Ω𝑍 ,BΩ𝑌 ×Ω𝑍
) with the

probability measure 𝑃 defined as:

𝑈 ↦→
∫
(𝑃𝑟 −1 (𝜔 ) ⊗ 𝑃𝑠−1 (𝜔 ) ) (𝑈 ) d𝑃Ω𝑊

(𝜔) , (38)

where 𝑃𝑟 −1 (𝜔 ) ⊗ 𝑃𝑠−1 (𝜔 ) is the product probability measure. Then

(Ω𝑌 × Ω𝑍 ,BΩ𝑌 ×Ω𝑍
, 𝑃)

together with the two projections, which are measure preserving, gives the required independent pullback. We write

the resulting independent pullback square as

Ω𝑌 ⊗Ω𝑊
Ω𝑍

[𝑝1 ]- Ω𝑌

Ω𝑍

[𝑝2 ]
? [𝑠 ]- Ω𝑊

[𝑟 ]
?

In combination, Propositions 8.9, 8.10 and 8.12 show that the categorySBP0 has the requisite structure (Definition 7.8).

We next define the anticipated sheaves of random variables, first by defining them as presheaves, and then subse-

quently verifying the atomic sheaf property.

Definition 8.13 (Presheaf of random variables RV(𝐴)). Let 𝐴 be a standard Borel space. Define a presheaf RV(𝐴) ∈
Psh(SBP0) of 𝐴=valued random variables (modulo =a.s.) by:

• RV(𝐴) (Ω) := equivalence classes of random variables 𝑋 : Ω → 𝐴 modulo =a.s..

• For [𝑋 ] ∈ RV(𝐴) (Ω) and [𝑞] : Ω′ → Ω, define [𝑋 ] · [𝑞] := [𝑋 ◦ 𝑞].

We remark that a similar definition can be used to define a presheaf of 𝐴-valued random variables modulo =a.s. over the

base category SBP. In the case that SBP is used as the base category, one can also define an alternative presheaf of

random variables, in which random variables are not quotiented modulo =a.s., an option which is not available when

SBP0 is used as the base category. The SBP -presheaf of unquotiented 𝐴-valued random variables is not, however, an

atomic sheaf. In contrast, irrespective of the choice of base category, SBP or SBP0, the presheaf of random variables

modulo =a.s. does form a sheaf. We prove this in the case of our chosen base category, SBP0.

Proposition 8.14. For any standard Borel space 𝐴, it holds that RV(𝐴) is an atomic sheaf.

Proof. Suppose [𝑌 ] ∈ RV(𝐴) (Ω′) is [𝑞]-invariant where Ω′
𝑞
−→ Ω. is a map in SBP0. Consider the independent

pullback square

Ω′ ⊗ΩΩ′
[𝑝1 ]- Ω′

Ω′

[𝑝2 ]
? [𝑞 ]- Ω

[𝑞 ]
?

By [𝑞]-invariance, [𝑌 ] · [𝑝1] = [𝑌 ] · [𝑝2], i.e., 𝑌 ◦ 𝑝1 =a.s. 𝑌 ◦ 𝑝2. That is, the measure of

𝑈 := {(𝜔 ′
1
, 𝜔′

2
) ∈ Ω′ × Ω′ | 𝑌 (𝜔1) = 𝑌 (𝜔2)}
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in Ω′ ⊗Ω Ω′ is 1. Equivalently, using (38),∫
(𝑃𝑞−1 (𝜔 ) ⊗ 𝑃𝑞−1 (𝜔 ) ) (𝑈 ) d𝑃Ω (𝜔) = 1.

So, for 𝑃Ω-almost all 𝜔 ∈ Ω, we have
(𝑃𝑞−1 (𝜔 ) ⊗ 𝑃𝑞−1 (𝜔 ) ) (𝑈 ) = 1 .

For any such 𝜔 , by the definition of product measure,∫ ∫
1𝑈 (𝜔 ′1, 𝜔

′
2
) d𝑃𝑞−1 (𝜔 ) (𝜔 ′1) d𝑃𝑞−1 (𝜔 ) (𝜔

′
2
) = 1 ,

where 1𝑈 is the indicator function for the set 𝑈 . So for 𝑃𝑞−1 (𝜔 ) -almost all 𝜔 ′
1
and 𝑃𝑞−1 (𝜔 ) -almost all 𝜔 ′

2
, we have

(𝜔 ′
1
, 𝜔′

2
) ∈ 𝑈 , i.e., 𝑌 (𝜔 ′

1
) = 𝑌 (𝜔 ′

2
). By arguing using the decomposability property of 𝑃𝑞−1 (𝜔 ) discussed beneath

Definition 8.2, it follows there exists a Borel subset 𝐶𝜔 ⊆ Ω′ with 𝑃𝑞−1 (𝜔 ) (𝐶𝜔 ) = 1 such that 𝑌 is constant on 𝐶𝜔 . By

the first property of disintegrations, 𝑃𝑞−1 (𝜔 ) (𝑞−1 (𝜔)) = 1. Defining 𝐷𝜔 := 𝐶𝜔 ∩𝑞−1 (𝜔), it holds that 𝑃𝑞−1 (𝜔 ) (𝐷𝜔 ) = 1,

the function 𝑞 has constant value 𝜔 on 𝐷𝜔 , and 𝑌 is also constant on 𝐷𝜔 . Let 𝑑𝜔 be the constant value of 𝑌 on 𝐷𝜔 .

Note that we have obtained such 𝑑𝜔 and 𝐷𝜔 , for 𝑃Ω-almost-all 𝜔 .

Next we show that there exists a measurable function 𝑋 : Ω → 𝐴 such that 𝑋 (𝜔) = 𝑑𝜔 , for 𝑃Ω-almost all 𝜔 . We first

show this in the special case that 𝐴 ⊆ R is a closed bounded interval, so all 𝐴-valued random variables are integrable

with their integrals taking values in 𝐴. Using integrability, we define

𝑋 (𝜔) :=

∫
𝑌 (𝜔 ′) d𝑃𝑞−1 (𝜔 ) (𝜔 ′) . (39)

For 𝑃Ω-almost all 𝜔 , we have ∫
𝑌 (𝜔 ′) d𝑃𝑞−1 (𝜔 ) (𝜔 ′) = 𝑑𝜔 , (40)

because 𝑌 (𝜔 ′) = 𝑑𝜔 , for 𝑃𝑞−1 (𝜔 ) -almost all 𝜔 ′ ∈ 𝐷𝜔 . So we indeed have the required measurable function 𝑋 in the

case of a closed bounded interval 𝐴. In the case of an arbitrary standard Borel space 𝐴, one takes some measurable

embedding of 𝐴 into [0, 1] (see the discussion after Definition 8.1), and then the definition of 𝑋 given above can be used

to obtain a measurable function Ω → [0, 1] that lands with probability 1 in the image of the embedding of 𝐴 in [0, 1],
meaning that it restricts (modulo redefining it on a null set) to the required map 𝑋 : Ω → 𝐴.

We next verify that 𝑋 ◦ 𝑞 =a.s. 𝑌 : Ω′ → 𝐴. Consider the Borel set 𝐸 := {𝜔 ′ ∈ Ω′ | 𝑋 (𝑞(𝜔 ′)) = 𝑌 (𝜔 ′)}. We claim

that, for 𝑃Ω-almost-every 𝜔 , it holds that 𝐷𝜔 ⊆ 𝐸. Indeed, for 𝑃Ω-almost-all 𝜔 , we have that 𝜔 ′ ∈ 𝐷𝜔 implies both

𝑞(𝜔 ′) = 𝜔 and 𝑌 (𝜔 ′) = 𝑑𝜔 , hence 𝑋 (𝑞(𝜔 ′)) = 𝑌 (𝜔 ′) follows, i.e., 𝜔 ′ ∈ 𝐸. Because 𝐷𝜔 ⊆ 𝐸, we have

𝑃𝑞−1 (𝜔 ) (𝐸) = 𝑃𝑞−1 (𝜔 ) (𝐷𝜔 ) = 1 .

By the definition of disintegrations,

𝑃Ω′ (𝐸) =

∫
𝑃𝑞−1 (𝜔 ) (𝐸) d𝑃Ω (𝜔) =

∫
1 d𝑃Ω (𝜔) = 1 .

So indeed 𝑋 ◦ 𝑞 =a.s. 𝑌 : Ω′ → 𝐴. That is, [𝑋 ] · [𝑞] = [𝑌 ]. So [𝑋 ] is a [𝑞]-descendent of [𝑌 ].
That [𝑋 ] is the unique [𝑞]-descendent of [𝑌 ] holds because𝑞 is almost surjective, as in the proof of Proposition 8.9. □

Corollary 8.15. For any SBPS Ω the representable presheaf yΩ is an atomic sheaf,.

Proof. For any SBPS Ω′, we have that (yΩ) (Ω′) ⊆ RV(Ω) (Ω′); indeed it is the subset of measure-preserving

functions. It is then easily verified using Proposition 4.3 that yΩ is a subsheaf of RV(Ω). In particular, yΩ is a sheaf. □
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We end this section by showing as promised that the three atomic forms of atomic formula of our general atomic

sheaf logic are, in the case that sorts are interpreted as sheaves of random variables, correctly interpreted as the

expected probabilistic relations between random variables. Firstly, that equality in the logic corresponds to almost

sure equality of random variables is immediate from the definition of the sheaf RV(𝐴), in which random variables are

explicitly identified modulo =a.s.. Secondly, Proposition 8.16 below shows that atomic equivalence is interpreded as the

equidistribution relation

𝑑
= .

Proposition 8.16. For any SBS𝐴, the atomic equivalence subsheaf ∼RV(𝐴) ⊆ RV(𝐴)×RV(𝐴) from Theorem 5.1 satisfies:

∼RV(𝐴) (Ω) = {([𝑋 ], [𝑋 ′]) ∈ (RV(𝐴) × RV(𝐴)) (Ω) | 𝑋
𝑑
= 𝑋 ′} .

Proof. Consider any [𝑋 ], [𝑋 ′] ∈ RV(𝐴) (Ω).
Suppose we have [𝑢], [𝑢′] : Ω′ −→ Ω with [𝑋 ] · [𝑢] = [𝑋 ′] · [𝑢′], i.e., 𝑋 ◦ 𝑢 =a.s. 𝑋

′ ◦ 𝑢′. Then (𝑋 ◦ 𝑢)∗ (𝑃Ω′ ) =
(𝑋 ′ ◦ 𝑢′)∗ (𝑃Ω′ ). Whence

𝑋∗ (𝑃Ω) = 𝑋∗ (𝑢∗ (𝑃Ω′ )) = 𝑋 ′∗ (𝑢′∗ (𝑃Ω′ )) = 𝑋 ′∗ (𝑃Ω) ,

which shows 𝑋
𝑑
= 𝑋 ′.

Conversely, suppose 𝑋
𝑑
= 𝑋 ′; i.e., 𝑋∗ (𝑃Ω) = 𝑋 ′∗ (𝑃Ω). We write Ω𝐴 for the SBP space given by 𝐴 together with

the probability measure 𝑃𝑆 := 𝑋∗ (𝑃Ω). With this probability measure, the functions 𝑋 : Ω −→ Ω𝐴 and 𝑋 ′ : Ω −→ Ω𝐴

are morphisms in SBP. By coconfluence, there exist 𝑝, 𝑞 : Ω′ −→ Ω such that 𝑋 ◦ 𝑝 =a.s. 𝑋 ′ ◦ 𝑞, which implies

[𝑋 ] · [𝑝] = [𝑋 ′] · [𝑞]. So indeed ( [𝑋 ], [𝑋 ′]) ∈ ∼RV(𝐴) (Ω). □

The remaining form of atomic formula in our logic is conditional independence. Proposition 8.18 below shows

that atomic conditional independence is indeed interpreted as the probabilistic relation of conditional independence

(Definition 8.7). Before this, in order to be able to make sense of the relation of atomic conditional independence, we

need to verify that the sheaves RV(𝐴) have supports (Definition 7.1).

Proposition 8.17. For any standard Borel space 𝐴, it holds that RV(𝐴) has supports.

Proof. Consider any [𝑋 ] ∈ RV(𝐴) (Ω). Define a standard Borel probability space by

Ω𝑋 := 𝐴 with probability measure 𝑃Ω𝑋
:= 𝑋∗ (𝑃Ω) .

It is easily checked that (Ω𝑋 , [𝑋 ], [𝑥 ↦→ 𝑥]) is a support for [𝑋 ], using the almost surjectivity of [𝑋 ] : Ω −→ Ω𝑋 , as in

the proof of Proposition 8.9, for uniqueness. □

Proposition 8.18. For any SBSs 𝐴, 𝐵,𝐶 , the atomic conditional independence subsheaf

⊥⊥RV(𝐴),RV(𝐵) |RV(𝐶 ) ⊆ RV(𝐴)×RV(𝐵)×RV(𝐶)

from Theorem 7.10 satisfies:

⊥⊥RV(𝐴),RV(𝐵) |RV(𝐶 ) (Ω) = {([𝑋 ], [𝑌 ], [𝑍 ]) ∈ (RV(𝐴)×RV(𝐵)×RV(𝐶)) (Ω) | 𝑋 ⊥⊥𝑌 | 𝑍 } .
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Proof. Suppose [𝑋 ] ∈ RV(𝐴) (Ω), [𝑌 ] ∈ RV(𝐵) (Ω) and [𝑍 ] ∈ RV(𝐶) (Ω) are such that 𝑋 ⊥⊥𝑌 | 𝑍 according to

Definition 8.7. Define

Ω𝑋 := 𝐴 ×𝐶 with probability measure 𝑃Ω𝑋
:= (𝑋,𝑍 )∗ (𝑃Ω)

Ω𝑌 := 𝐵 ×𝐶 with probability measure 𝑃Ω𝑌
:= (𝑌, 𝑍 )∗ (𝑃Ω)

Ω𝑍 := 𝐶 with probability measure 𝑃Ω𝑍
:= 𝑍∗ (𝑃Ω) .

Then the hybrid diagram below, shows that the triple ( [𝑋 ], [𝑌 ], [𝑍 ]) belongs to the atomic conditional independence

relation ⊥⊥RV(𝐴),RV(𝐵) |RV(𝐶 ) (Ω).

Ω
[ (𝑋,𝑍 ) ]- Ω𝑋

[ (𝑥,𝑧 ) ↦→(𝑥,𝑧 ) ]- RV(𝐴) × RV(𝐶)

⊥⊥

Ω𝑌

[ (𝑌,𝑍 ) ]
?

𝜋2

- Ω𝑍

𝜋2

?

RV(𝐵) × RV(𝐶)

[ (𝑦,𝑧 ) ↦→(𝑦,𝑧 ) ]
?

𝜋2

- RV(𝐶)

𝜋2

?

[𝑧 ↦→𝑧 ]

-

In this diagram, (Ω𝑍 , [𝑍 ], [𝑧 ↦→ 𝑧]) is support for [𝑍 ], by the definition of Ω𝑍 , and the top-left square is independent,

because (𝑋,𝑍 ) ⊥⊥(𝑌, 𝑍 ) | 𝑍 holds, which follows from 𝑋 ⊥⊥𝑌 | 𝑍 .
Conversely, suppose ( [𝑋 ], [𝑌 ], [𝑍 ]) ∈ ⊥⊥RV(𝐴),RV(𝐵) |RV(𝐶 ) (Ω). Defining Ω𝑋 ,Ω𝑌 and Ω𝑍 as above, we have that

(Ω𝑋 , [(𝑋,𝑍 )], [(𝑥, 𝑧) ↦→ (𝑥, 𝑧)]) is support for [(𝑋,𝑍 )] and (Ω𝑌 , [(𝑌, 𝑍 )], [(𝑦, 𝑧) ↦→ (𝑦, 𝑧)]) is support for [(𝑌, 𝑍 )]
(Ω𝑍 , [𝑍 ], [𝑧 ↦→ 𝑧]) is support for [𝑍 ]. So, by Lemma 7.9, these supports fit into the hybrid diagram above. Since the

top-left square is independent, we have (𝑋,𝑍 ) ⊥⊥(𝑌, 𝑍 ) | 𝑍 . From this, 𝑋 ⊥⊥𝑌 | 𝑍 follows, as required. □

9 The Schanuel topos

We give a very condensed outline, without proofs, of one more example in which we have an atomic sheaf logic of

equivalence and conditional independence: the Schanuel topos, which is equivalent to the category of nominal sets of

Gabbay and Pitts [14, 35].

Let I be (a small version of) the category whose objects are finite sets and whose morphisms are injective functions.

We consider the topos of atomic sheaves over the category Iop. Since all maps in I are obviously monomorphic, all maps

in Iop are epimorphic.

Proposition 9.1. The category Iop carries independent pullback structure satisfying the descent property. and it has

pairings.

Description of structure. Define a commuting square in Iop to be independent if the associated square (with

opposite orientation) of functions in I is a pullback in I (or equivalently in Set). A commuting square in Iop is then an

independent pullback if and only if the associated square of functions in I is a pushout in Set (but not necessarily in

I). Every cospan in Iop completes to an independent pullback by taking the pushout in Set of the associated span of

functions in I. □

Proposition 9.2. The category Iop has pairings.
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Description of structure. A span in Iop gives rise to a cospan of functions in I. The pairing in Iop is given by the

pushout in Set of the pullback in I (or Set) of this cospan of functions. □

A presheaf 𝑃 ∈ Psh(Iop) is just a covariant functor 𝑃 : I→ Set. The description of independent squares above, means

that Theorem 6.6, in the case of C = Iop, specialises to the well-known characterisation that a presheaf 𝑃 ∈ Psh(Iop) is
an atomic sheaf if and only if the covariant functor 𝑃 : I→ Set preserves pullbacks (see, e.g., [23, A 2.1.11(h)]). This

property enables the result below to be established by constructing supports in Iop as a multiple pullbacks in I over all

representable factorisations, of which there are only finitely many.

Proposition 9.3. Every atomic sheaf in Shat (Iop) has supports.

For a sheaf 𝐴 in Shat (Iop), the support of an element 𝑥 ∈ 𝐴(𝑋 ) corresponds to a smallest subset supp(𝑥) ⊆ 𝑋 for

which there exists 𝑦 ∈ 𝐴(supp(𝑥)) such that 𝑥 = 𝑦 · 𝑖 , where 𝑖 : 𝑋 −→ supp(𝑥) in Iop is given by the inclusion function

supp(𝑥) → 𝑋 . Proposition 9.3 is well known. For example, it plays a key role in Fiore’s presentation of Shat (Iop) as
a Kleisli category [13, 30]. An analogous property is also prominent in presentations of the equivalent category of

nominal sets [14, 35].

Proposition 9.4. For any 𝐴 in Shat (Iop), the atomic equivalence subsheaf ∼𝐴 ⊆ 𝐴×𝐴 from Theorem 5.1 satisfies:

∼𝐴 (𝑋 ) = {(𝑥,𝑦) ∈ (𝐴 ×𝐴) (𝑋 ) | ∃𝑋
𝑖−→ 𝑋 . 𝑦 = 𝑥 · 𝑖} .

Proposition 9.5. For any 𝐴, 𝐵,𝐶 in Shat (Iop), the atomic conditional independence subsheaf

⊥⊥𝐴,𝐵 |𝐶 ⊆ 𝐴×𝐵×𝐶

from Theorem 7.10 satisfies:

⊥⊥𝐴,𝐵 |𝐶 (𝑋 ) = {(𝑥,𝑦, 𝑧) ∈ (𝐴 × 𝐵 ×𝐶) (𝑋 ) | supp(𝑥) ∩ supp(𝑦) ⊆ supp(𝑧) } .

10 Discussion and related work

10.1 Relationship with (multi)team semantics

Our main running example throughout the paper has been the category of atomic sheaves over the category Sur, in

which the interpretations of atomic equivalence and conditional independence, when applied to the sheaves NV(𝐴) of
nondeterministic variables, coincide with the multiteam interpretations of those relations from the (in)dependence logics

of [11, 17, 42]. For our logic, we use the canonical internal logic of an atomic sheaf topos, whose semantics is provided

by the forcing relation of Figure 2, and whose underlying logic is ordinary classical logic.

In our route to atomic sheaf logic in Sections 2–4, the use of multiteams seems essential. Indeed, it is the presentation

of multiteams as finite-fibred functions in Section 2 that forms the basis for the connection with the category Sur,

whence with atomic sheaves. This contrasts with the majority of work on (in)dependence logic, from [17, 42] onwards,

which is largely based on teams rather than on multiteams. It is accordingly worth observing, that it is possible to

reformulate the atomic sheaf logic of Figure 2 directly in terms of teams. To see this, note that any finite team trivially

gives rise to a canonical finite multiteam, in which every assignment has multiplicity 1. Conversely, the support of any

finite multiteam is a team. Under the correspondence betweenV-multiteams, andV-assignments of nondeterministic

variables, discussed in Section 2, we can reformulate these two statements in the following way. Every finiteV-team

gives rise to 𝜌 : V → (Ω → 𝐴) enjoying the team property: for all𝜔,𝜔 ′ ∈ Ω, if 𝜌 (x) (𝜔) = 𝜌
𝑆
(x) (𝜔 ′), for all x ∈ V , then
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𝜔 = 𝜔 ′. Moreover, for everyV-multiteam 𝜌′ : V → (Ω′ → 𝐴) there exists a unique up to isomorphism 𝑞 : Ω′ → Ω

and 𝜌 : V → (Ω → 𝐴) such that 𝜌 satisfies the team property and 𝜌′ = 𝜌 · 𝑞. It thus follows from the sheaf property

of forcing (Proposition 4.8) that the behaviour of the relation Ω ⊩𝜌 Φ in Shat (Sur), for any formula Φ, is determined

entirely by its behaviour on teams 𝜌 . Moreover, it is easy to unwind the clauses in Figure 2 and to reformulate them

directly in terms of ordinary teams qua sets of assignments. Thus atomic sheaf logic over Sur could equivalently be

presented in terms of teams rather than multiteams.

If one carries out such a reformulation in the case of conjunction and of the existential quantifier, one obtains the

standard team interpretation of the former [42], and the lax interpretation of the latter, which is often the preferred

team interpretation [17, 18]. The clauses for the other connectives and for the universal quantifier are different however.

Whereas the clauses in Figure 2 validate the laws of classical logic, it is well known that the standard team semantics of

the other connectives and the universal quantifier leads to some logically exotic behaviour. For example, disjunction is

not an idempotent operation. Abramsky and Väänänen [1] provide an illuminating explanation for such behaviour,

by showing that the dependence logic connectives and quantifiers can be naturally understood as fitting into the

framework of Pym and O’Hearn’s logic of bunched implications (BI) [32, 36]. We now review this perspective and then

discuss how it might be adapted to atomic sheaf logic.

The approach of [1] is based on Lawvere’s notion of hyperdoctrine [26, 34]. Recall that the contravariant poswerset

functor P on sets, can be viewed as a functor P : Setop → Pos, where Pos is the category of partially ordered sets and

monotone functions. Specifically, P maps any set 𝑋 to its set of subsets partially ordered set ordered by subset inclusion.

The functor P : Setop → Pos is then a hyperdoctrine. Propositional logic for propositions over a set 𝑋 is modelled by

the boolean algebra structure on P(𝑋 ). For any function 𝑓 : 𝑋 → 𝑌 , the reindexing function P(𝑓 ) := 𝑓 −1 : P(𝑌 ) → P(𝑋 )
preserves the boolean algebra structure. The quantifiers ∃ : P(𝑋 × 𝑌 ) → P(𝑋 ) and ∀ : P(𝑋 × 𝑌 ) → P(𝑋 ), quantifying
over a set 𝑌 , are modelled as left and right adjoints respectively to the monotone function (considered qua functor)

𝜋−1
1

: P(𝑋 ) → P(𝑋 × 𝑌 ), where 𝜋1 : 𝑋 × 𝑌 → 𝑋 is the projection map.

The main construction in [1], adapts the above hyperdoctrine for classical logic to team semantics, by composing

P : Setop → Pos with the functor L : Pos→ Pos given by the operation L that maps any partial order 𝐵 to its lattice

L(𝐵) of down-closed sets. The composite functor LP : Setop → Pos then has the following properties. For every set 𝑋 ,

the fibre poset LP(𝑋 ) is, in a canonical way, a BI algebra, that is an algebraic model of the logic of bunched implications

BI [32, 36]. In the case 𝑋 = 𝐴V , the elements of LP(𝐴V ) are precisely down-closed (in the subset ordering) sets of

𝐴-valued teams with variable setV . Each connective of BI is modelled algebraically as a function of appropriate arity

on LP(𝐴V ). For example, the multiplicative conjunction ⊗, is modelled as a certain canonically generated function

⊗ : LP(𝐴V ) × LP(𝐴V ) → LP(𝐴V ). Writing Φ and Ψ for elements of LP(𝐴V ) (which can be thought of as an

abstract set of propositions), and writing 𝑆 ⊩ Φ to mean 𝑆 ∈ Φ, the function ⊗ can be characterised by

𝑆 ⊩ Φ ⊗ Ψ ⇔ ∃𝑇,𝑈 , 𝑆 = 𝑇 ∪𝑈 and 𝑇 ⊩ Φ and𝑈 ⊩ Ψ .

This is exactly the semantic clause for the disjunction connective of team semantics. The exotic behaviour of the

disjunction of dependence logic is thus nicely explained as a manifestation of the expected behaviour of the mul-

tiplicative conjunction of BI, whose multiplicative connectives have a natural resource-sensitive interpretation. A

further consequence of the hyperdoctrine construction in [1] is that the embedding of dependence logic in BI enriches

the former with additional logical connectives, such as both additive (intuitionistic) and multiplicative implications.

Lastly, the hyperdoctrine formulation of dependence logic provides an elegant explanation for the team semantics
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interpretation of the quantifiers ∃ and ∀ : LP(𝐴V⊎{𝑥 } ) → LP(𝐴V ), which are characterised in the desired way [26, 34]
as respectively left and right adjoints to LP(𝜌 ↦→ 𝜌 |V ) : LP(𝐴V ) → LP(𝐴V⊎{𝑥 } ).

The above hyperdoctrine construction from [1] works for the original dependence logic [42], but not for independence

logic [17], because teams satisfying independence atoms are not down-closed in the subset order. This means that the

L functor cannot be used to interpret formulas involving independence. An alternative is to combine the contravariant

powerset functor P with the covariant powerset functor P! (with direct image as its functorial action). It turns out that if

one considers the composition in the order PP! : Setop → Pos, then the left and right adjoints to the monotone function

PP! (𝜌 ↦→ 𝜌 |V ) : PP! (𝐴V ) → PP! (𝐴V⊎{𝑥 } ) correspond respectively to the existential and universal quantifier with

(the team version of) the forcing clauses from Figure 2. Further, the boolean algebra structure on PP! (𝐴V ) corresponds
to (the team version of) the forcing clauses for the propositional connectives in Figure 2, and this structure is preserved

by all reindexing maps PP! (𝑓 ). The hyperdoctrine PP! : Setop → Pos thus recovers the team version of atomic sheaf

logic as in Figure 2. It would be interesting to investigate this construction in more detail, for example to explore how

independence and equivalence formulas interact with the hyperdoctrine formulation, and also the extent to which the

logic BI logic is relevant in this picture. Both points are potentially subtle. The standard hyperdoctrine desideratum

that logical structure should be preserved by reindexing maps provides a constraint on which atomic primitives are

admissible. Moreover, the relevance of BI logic is less a priori apparent than in [1], because the switch in the order of

composition (PP! has the covariant functor as the inner functor, whereas LP has its covariant functor as the outer

functor) means that the outermost functor is no longer given by a canonical BI-algebra construction.

A different source of exotic behaviour in (in)dependence logics concerns interaction between the universal quantifier

and (in)dependence atoms. One particularly striking example is provided by the sentence below.

∀xA,∀yB . (xA ⊥ yB) (41)

According to the usual team semantics of the universal quantifier, the above sentence is valid. Nevertheless, one can

easily exhibit example teams 𝑆 for which it is not the case that 𝑆 ⊩ xA ⊥ yB, and rightly so, because there would be little

point in independence logic if independence were a universally valid relation. We view the validity of (41) (and other

examples like it) as showing that if one is to use (in)dependence logic as a basis for reasoning about (in)dependence

properties then the associated rules of inference will have to be unusual.

Nevertheless, independence logics and their team semantics have been successfully applied in the direction of

reasoning about dependence and conditional independence. For example, Hannula and Kontinen axiomatise the valid

implications involving inclusion and embedded multivalued dependencies in database theory in terms of inclusion and

conditional independence formulas with their team semantics [18]. An interesting observation about this work is

that it takes place in the fragment of independence logic comprising conjunction and (lax) existential quantification

as the only logical operators. Since these are exactly the logical operators for which the semantic interpretations in

independence logic and atomic sheaf logic coincide, the same development can be imported verbatim into atomic sheaf

logic in Shat (Sur) extended with the inclusion relation (which indeed defines a subsheaf of NV(𝐴) × NV(𝐴)). One
advantage of such a reformulation is that the axiomatised rules of inference in [18] can be expressed as individual

formulas, using the general implication connective of atomic sheaf logic, rather than left as entailments. For example,

the rule of inclusion introduction, which concerns the inclusion relation, has an obvious (derivable) analogue for the

equivalence (equiextension) relation, namely: if one has already derived an equivalence formula ®x ∼ ®x′ then one can

infer the formula ∃y′A . (®x, yA ∼ ®x′, y′A). In atomic sheaf semantics, this rule can be formulated as an implication.

Indeed, it is none other than the transfer principle (16) from Figure 3, valid in any atomic sheaf topos. The same transfer
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principle can also be found in mainstream probability theory. The interpretation of (16) in the category Shat (SBP0) of
probability sheaves is very close to the transfer theorem of [24, Theorem 5.10], and arguably captures the essence of

that theorem in logical form.

The interpretation of atomic sheaf logic in Shat (SBP0) also connects with a body of work on adapting team semantics

to probability-based scenarios. For example, an 𝐴-valued measure team in [21] is a measurable map Ω → (V → 𝐴),
for some probability space Ω and set of variables V . This can equivalently be presented as a map V → (Ω → 𝐴),
which is almost the same thing as a variable assignment in atomic sheaf logic over SBP0, i.e., a mapping from variables

to elements of RV(𝐴) (Ω). There are however two key differences: random variables in RV(𝐴) are identified up to

almost sure equality, and objects in SBP0 are restricted to probability spaces Ω that are standard Borel. Although

these differences may seem minor, they are crucial to the interpretation of atomic sheaf logic in Shat (SBP0). For
example, it is because of the restriction to standard Borel spaces that the category Shat (SBP0) is coconfluent. The
failure of coconfluence for general probability spaces makes it difficult to extend the measure-team semantics of atomic

formulas in [21] to include the logical connectives and atoms of independence logic. In the literature, such extensions

have been given only for probabilistic teams based on discrete probability [12]. It is worth remarking that discrete

probability fits in equally well with the approach of the present paper. One can consider atomic sheaves over the

category of finite probability spaces, or alternatively over the category of countable probability spaces, both of which

are full subcategories of SBP0. Such examples further substantiate our thesis that atomic sheaf categories provide a

unifying framework configurable to diverse settings for conditional independence. It would be interesting to compare

our approach with the semiring-based framework of [4], which provides a different unifying approach to varieties of

team semantics, which encompasses both ordinary teams and discrete probabilistic teams.

10.2 Computer science applications

In this section we outline possible computer science applications for atomic sheaf logic. Rather than trying to be

comprehensive, we instead focus on a few illustrative examples, beginning with reasoning about probabilistic programs.

An almost surely terminating imperative probabilistic program 𝐶 can be modelled as a probabilistic map between

states, that is a function J𝐶K𝑆 : State→ D(State), where D(State) is the set of probability distributions over states.

Alternatively, but equivalently, it can be viewed as a transformation J𝐶K𝑇 : D(State) → D(State) mapping a probability

distribution on initial states to the induced probability distribution on final states [25]. There is also a third related

possibility. One can view the program as a transformation J𝐶K𝑅 mapping an initial random state Σ : Ω → State, for

some sample space Ω, to a final random state T [22]. However, because the program 𝐶 may make use of randomness

not present in Ω, the sample space for T has to be, in general, an extension of Ω, meaning that T : Ω′ → State for

some suitable sample space Ω′ equipped with a probability preserving map 𝑞 : Ω′ → Ω. While the idea of modelling

programs as random-state transformers is very natural, some careful bookkeeping is required to deal with the change

of sample space. Such bookkeeping can be avoided entirely if one uses the alternative approach of defining the random-

state-transformer semantics in the atomic sheaf logic of Shat (SBP0). Under this approach J𝐶K𝑅 is formulated as a

relation J𝐶K𝑅 ⊆ RV(State) × RV(State) satisfying: for any random initial state Σ on which 𝐶 terminates, there exists a

random final state T such that ΣJ𝐶K𝑅T and, for any random state T
′
, it holds that ΣJ𝐶K𝑅T′ implies Σ,T ∼ Σ,T′. The

key point here is that no sample spaces need to be specified, because, from the viewpoint of atomic sheaf logic, sample

spaces are implicit, and the extension of sample spaces is likewise taken care of implicitly by the semantics of the

existential quantifier. Not only is such an implicit-sample-space style of manipulating random variables intuitive, it

also avoids the bookkeeping required when dealing with explicit sample space extensions. For example, in [22], a
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property called relative tightness is identified as useful property of probabilistic Hoare-triple-like specifications. Such a

specification {Φ}𝐶{Ψ} asserts that, if the precondition Φ holds for a random initial state Σ, and if 𝐶 terminates from

Σ, then the postcondition Ψ holds for the induced random final state T. The property of relative tightness asserts

that the probabilistic behaviour of the random state T on the variables FV(Ψ) relevant to determining the truth of Ψ,

depends only on the value of the initial state Σ on FV(Φ). This can be formulated in a simple way as the statement

about conditional independence on the left below

TFV(Ψ) ⊥ Σ | ΣFV(Φ) TFV(Ψ) ⊥ Σ ◦ 𝑞 | ΣFV(Φ) ◦ 𝑞 ,

where ΣFV(Ψ) and TFV(Ψ) denote the initial and final random states restricted to the specified variable sets. For contrast,

we include on the right above the statement of relative tightness that appears in [22], which shows the need for

bookkeeping (in this case, composition with 𝑞) when the standard mathematical formulation of random variables with

explicit sample spaces is used. For a more involved example of the efficiency afforded by the implicit-sample-space

approach of atomic sheaf logic, we consider how the while statement on the left below is approximated by iterating the

conditional statement on the right.

while 𝐵 do 𝐶 if 𝐵 then 𝐶 else skip

Working within atomic sheaf logic, suppose the while statement terminates in random final state T from a random

initial state Σ. Then defining Σ0 = Σ and letting Σ𝑛+1 be such that Σ𝑛J𝐶K𝑅Σ𝑛+1, we obtain a sequence (Σ𝑛)𝑛≥0 of
random states that converges almost surely to the random state 𝑇 . The resulting convergence property Σ𝑛 → T is used

in ongoing work extending [22] to prove the correctness of a partial correctness rule for while loops in a probabilistic

program logic. The formulation of the same convergence statement with explicit sample states is unwieldy as it involves

a sequence Ω0

𝑞0←−− Ω1

𝑞1←−− Ω2

𝑞2←−− · · · of sample space extensions for the random states (Σ𝑛)𝑛 , as well as a cone (in the

category-theoretic sense) (Ω𝑛
𝑟𝑛←−− Ω′)𝑛 for the sequence, where Ω′ is the sample space for T. With this scaffolding in

place, the convergence property can be stated as Σ𝑛 ◦ 𝑟𝑛 → T.

We have outlined above how atomic sheaf logic might be applied to formulate a random-state-based operational

semantics for imperative probabilistic programs. Another potential application is to the assertion logics of Hoare-like

program logics for probabilistic programs, in particular to probabilistic separation logic (PSL). PSL was first introduced

in [5] as an approach to verifying probabilistic programs using a version of the separating conjunction of separation

logic [31, 43] to reason about probabilistic independence. The modular style of reasoning is supported by a version of

the frame rule of separation logic, which, in the case of probabilistic separation logic, allows certain statements about

probabilistic independence to be inferred. The paper [5] presents several applications to the verification of cryptographic

protocols. Subsequent work has extended the approach to reason about negative dependencies [3], adapted it to a

probabilistic functional language [27] and incorporated conditional independence [2, 27]. In all the aforementioned

works, the assertion logic has been given as an instance of the logic of bunched implications (BI) with a Kripke-style

semantics defined over a partially ordered resource monoid [36]. This leads to an intuitionistic but not classical assertion

logic. It seems likely that one can obtain a classical assertion logic, by replacing the Kripke-style semantics of BI in a

partially ordered resource monoid with a category-based semantics utilising the forcing clauses of atomic sheaf logic.
3

3
‘one version of such a classical assertion logic appears in [22]. However, the very simple setting of abstract semantic asserions with no explicit quantifiers

in op. cit., enables the category-theoretic genesis of the logic to be hidden. Its one remaining trace is the set of footprint variables, which corresponds to

the notion of support in the present paper.
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Another connection with the logic of bunched implications comes from a fact that we have not developed in the

present paper: every category C with independent pullbacks and terminal object is symmetric monoidal, and its category

Shat (C) of atomic sheaves carries, in addition to its cartesian closed structure, a second symmetric monoidal closed

structure ⊗Sh derived, using the methods of [9], from the modoidal structure of C. Categories with two such closed

structures are category-theoretic models of BI [32]. In the case of Shat (C), the monoidal structure is furthermore affine,

hence it has projections 𝐴 ←− 𝐴 ⊗Sh 𝐵 −→ 𝐵. In the case that 𝐴 and 𝐵 have supports, then the projections are jointly

monic and the resulting monomorphism

𝐴 ⊗Sh 𝐵-- 𝐴 × 𝐵

is in fact isomorphic to ⊥⊥𝐴,𝐵 ⊆ 𝐴 × 𝐵 given by the unconditional version of (20) (i.e., in which 𝐶 is a terminal object).

That is, the unconditional independence relation of the present paper is recovered as an instance of monoidal structure.

This connection will be elaborated in a follow-up paper, where also the relationship with the monoidal category setting

of [38] will be discussed. Indeed the notion of local independence structure with local independent products in op. cit. is

equivalent to the independent pullback structure of Section 6, but with a much more involved axiomatisation in terms

of fibred monoidal structure. The monoidal structure of C provides another connection between the work of the present

paper and varieties of separation logic including probabilistic separation logic, as elaborated by Li et. al. [28]. In their

work, the Day monoidal product on presheaves [9] is used to model the separation of state into independent segments,

whose probabilistic independence can be superimposed using a probability monad. As in our work, the notion of sheaf

with supports, which was introduced independently in [28], plays a crucial role.

The category Nom of nominal sets of Gabbay and Pitts [14, 35] has found applications to reasoning about names in

computer science. The monograph [35] presents many examples of such applications, together with pointers to the

literature. One prominent application area is reasoning about abstract syntax for languages involving operators that

bind variables.

As mentioned in Section 9, the category Nom is equivalent to the Schanuel topos, and so the relations of equivalence

and conditional independence defined in Section 9 can be transferred to Nom. In Nom, the atomic equivalence relation

of Proposition 9.4 is the equivalence relation of being in the same orbit. The special case of Proposition 9.5 corresponding

to the relation of unconditional independence 𝑥 ⊥⊥𝑦 is the relation of separatedness (supp(𝑥) ∩ supp(𝑦) = ∅), which is a

central relation of interest in the literature on nominal sets. The full conditional independence relation 𝑥 ⊥⊥𝑦 | 𝑧 is then
a relative notion of separatedness (supp(𝑥) ∩ supp(𝑦) ⊆ supp(𝑧)), which first appeared in [38]. We believe that the

atomic logic of equivalence and conditional independence developed in the present paper may, when transported to

Nom, provide a convenient setting for reasoning about syntax with variable binding. Let us illustrate this using the

untyped 𝜆-calculus as an example.

There are several approaches to reasoning about syntax with variable binding. The first is to reason about raw terms,

in which, for example, 𝜆𝑥. 𝑥 is distinguished from 𝜆𝑦.𝑦 because the variable name differs. This leads to an awkward

definition of substitution𝑀 [𝑥 := 𝑁 ] that involves a non-canonical choice of bound-variable renaming, and does not

provide a good foundation on which to base structured reasoning principles. Some abitrariness can be avoided by

imposing canonicity on bound-variables names, for example using de Bruijn indices. However, syntactic manipulations

then involve arithmetic operations on indices, which means that proofs of syntactic properties are entangled with

arithmetic proofs that are an artefact of the choice of representation and have no intrinsic connection to the syntactic

properties being proved. An alternative, favoured in many informal expositions of syntax, is to work with equivalence

classes of terms modulo 𝛼-equivalence instead of raw terms. This leads to a canonical definition of substitution, but
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has two drawbacks that are particularly significant if one wishes to formalise proofs. The first drawback is that all

term manipulations need to be proved compatible with the equivalence relation. Such proofs are often omitted from

informal expositions, but of course need to be given in a formal setting. The second drawback is that one loses the

structural-induction principle on terms that is derived from the inductive definition of raw terms.. These two issues can

be given a very elegant solution by defining syntax in the category of nominal sets. There is a functor called name

abstraction that can be used to give a direct inductive definition of the nominal set of terms modulo 𝛼-equivalence. This

definition comes with an associated principle of structural induction for reasoning about terms modulo 𝛼-equivalence,

and a principle of structural recursion that allows one to define functions that are automatically well-defined on

𝛼-equivalence classes. This approach is more fully described in the monograph [35], which also contains pointers to the

wider literature. It seems fair to say, however, that this approach does not solve all the practical difficulties of reasoning

about binding operators. For example, the structural induction and recursion principles can be cumbersome to work

with, due to their side conditions involving concepts such as separatedness and freshness.

We propose here an alternative approach to reasoning about syntax with binding operators in the category of

nominal sets. The idea is to reason directly about raw terms rather than about 𝛼-equivalence classes of terms, but to

use properties of the atomic-sheaf-logic equivalence and conditional independence relations to enable definitions and

reasoning to be carried out in an elegant structural way. To illustrate the proposal, let us consider untyped 𝜆-terms

presented in the form Γ ⊢ 𝑀 , where Γ is a finite sequence of distinct names that are treated as free variables in term𝑀 .

The rules for generating such terms are:

𝑎 ∈ Γ
Γ ⊢ 𝑎

Γ ⊢ 𝑀 Γ ⊢ 𝑁
Γ ⊢ 𝑀𝑁

Γ, 𝑎 ⊢ 𝑀
𝑎 ∉ Γ

Γ ⊢ 𝜆𝑎. 𝑀
.

Then the Γ-indexed relation {≡Γ ⊆ TermΓ × TermΓ}Γ of 𝛼-equivalence, where

TermΓ := {Γ ⊢ 𝑀 | Γ ⊢ 𝑀 is a term} ,

can be defined as the smallest Γ-indexed congruence relation containing atomic equivalence {∼Γ ⊆ TermΓ × TermΓ}Γ
(i.e., orbit equality).

4
Substitution Γ ⊢ 𝑀 [𝑎 := 𝑁 ] can be specified as a function defined on any pair of terms Γ, 𝑎 ⊢ 𝑀

and Γ ⊢ 𝑁 for which the conditional independence (i.e., relative separation property)

Γ, 𝑎 ⊢𝑀 ⊥ Γ ⊢𝑁 | Γ

holds, by simple structural recursion on the structure of the raw term Γ, 𝑎 ⊢ 𝑀 . Of course, one would like substitution

to be defined on all suitable terms, not just on sufficiently separated ones. This is achieved, by defining substitution as a

ternary relation SubΓ,𝑎 ⊆ TermΓ,𝑎 × TermΓ × TermΓ , by specifying that

SubΓ,𝑎 (Γ,𝑎 ⊢𝑀, Γ ⊢𝑁, Γ ⊢𝐿)

holds precisely when there exists Γ ⊢ 𝑁 ′ such that Γ ⊢𝑁 ′ ∼ Γ ⊢𝑁 and Γ,{𝑎} ⊢𝑀 ⊥ Γ ⊢𝑁 ′ | Γ and 𝐿 = 𝑀 [𝑎 := 𝑁 ′]. By
the independent existence principle (30), this relation is total in the sense that, for any𝑀, 𝑁 (for brevity we omit the

contexts) there exists 𝐿 such that Sub(𝑀, 𝑁, 𝐿). The relation is also single-valued up to equivalence: if Sub(𝑀, 𝑁, 𝐿) and
Sub(𝑀, 𝑁, 𝐿′) then it holds that Γ ⊢𝐿 ∼ Γ ⊢𝐿′. Preservation of 𝛼-equivalence, then follows in the form: if 𝑀 ≡Γ,𝑎 𝑀′

and 𝑁 ≡Γ 𝑁 ′ and Sub(𝑀, 𝑁, 𝐿) and Sub(𝑀′, 𝑁 ′, 𝐿′) then 𝐿 ≡Γ 𝐿′, which can be established elegantly and abstractly

using the characterisation of 𝛼-equivalence given above.

4
This characterisation depends on the use of terms with explicit contexts and on the restriction to contexts in which all names are distinct.
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A high-level summary of the above outlined approach is that one reasons with raw terms, making use of atomic sheaf

logic and its equivalence and conditional independence relations to systematically subsume the necessary renaming of

bound variables as instances of general logical principles.

The fact that atomic sheaf logic applies both to nominal sets (via the equivalence with Shat (Iop)) and to probability

(via Shat (SBP0)) means that one can compare the two approaches to nominal syntax, the standard one in which terms

are 𝛼-equivalence classes and the proposed one using raw terms, using an analogy with probability theory. When

terms (with explicit context) are considered as 𝛼-equivalence classes, they are, in particular, equated up to atomic

equivalence (orbit equality). In the probabilistic setting of Shat (SBP0), atomic equivalence is equality in distribution.

So reasoning with 𝛼-equivalence classes is analogous to doing probability with probability distributions. In contrast,

our proposal to reason with raw terms and make use of the atomic equivalence and conditional independence relations

is analogous to, in probability theory, reasoning with random variables and exploiting the relations of equality in law

and conditional independence between them. Certainly, in mainstream probability theory, reasoning with random

variables is usually considered more convenient than reasoning with probability distributions. It therefore seems worth

investigating whether our proposed approach to reasoning about syntax will have similar practical advantages over the

𝛼-equivalence-class-based approach. It is intended to carry out some case studies in this direction as future research.

10.3 Further work

We end the paper with two questions for potential further investigation on the theory side, of which the second was

suggested by one of the journal referees. The first is to obtain a completeness theorem for the logic of equivalence and

conditional independence valid in atomic toposes. The second is to investigate whether atomic sheaf logic enjoys a

similar relationship to second-order logic as that enjoyed by dependence logic [42].

Acknowledgments

I thank Angus Macintyre for drawing my attention to dependence logic, and André Joyal, Paul-André Melliès, Dario

Stein and the anonymous reviewers of both conference and journal versions for helpful suggestions. I also thank

Terblanche Delport, Willem Fouché and Paul and Petrus Potgieter for their hospitality in Pretoria in January 2023,

where half this paper was written. Paul Taylor’s diagram macros were used.

References
[1] Samson Abramsky and Jouko Väänänen. 2009. From IF to BI: a tale of dependence and separation. Synthese 167 (2009), 207–230. https:

//doi.org/10.1007/s11229-008-9415-6

[2] Jialu Bao, Simon Docherty, Justin Hsu, and Alexandra Silva. 2021. A Bunched Logic for Conditional Independence. In 2021 36th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). 1–14. https://doi.org/10.1109/LICS52264.2021.9470712

[3] Jialu Bao, Marco Gaboardi, Justin Hsu, and Joseph Tassarotti. 2022. A separation logic for negative dependence. Proc. ACM Program. Lang. 6, POPL,
Article 57 (Jan. 2022), 29 pages. https://doi.org/10.1145/3498719

[4] Timon Barlag, Miika Hannula, Juha Kontinen, Nina Pardal, and Jonni Virtema. 2023. Unified foundations of team semantics via semirings. In

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning (Rhodes, Greece) (KR ’23). Article 8, 11 pages.
https://doi.org/10.24963/kr.2023/8

[5] Gilles Barthe, Justin Hsu, and Kevin Liao. 2019. A probabilistic separation logic. Proc. ACM Program. Lang. 4, POPL, Article 55 (dec 2019), 30 pages.
https://doi.org/10.1145/3371123

[6] Fredrik Dahlqvist, Vincent Danos, Ilias Garnier, and Ohad Kammar. 2016. Bayesian Inversion by Omega-Complete Cone Duality. In 27th International
Conference on Concurrency Theory (CONCUR 2016) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 59), Josée Desharnais and Radha

Jagadeesan (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 1:1–1:15. https://doi.org/10.4230/LIPIcs.CONCUR.2016.1

[7] A. P. Dawid. 1979. Conditional Independence in Statistical Theory. Journal of the Royal Statistical Society. Series B (Methodological) 41, 1 (1979), 1–31.
http://www.jstor.org/stable/2984718

Manuscript submitted to ACM

https://doi.org/10.1007/s11229-008-9415-6
https://doi.org/10.1007/s11229-008-9415-6
https://doi.org/10.1109/LICS52264.2021.9470712
https://doi.org/10.1145/3498719
https://doi.org/10.24963/kr.2023/8
https://doi.org/10.1145/3371123
https://doi.org/10.4230/LIPIcs.CONCUR.2016.1
http://www.jstor.org/stable/2984718


2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

Equivalence and Conditional Independence in Atomic Sheaf Logic 45

[8] A. P. Dawid. 2001. Separoids: A Mathematical Framework for Conditional Independence and Irrelevance. Annals of Mathematics and Artificial
Intelligence 32, 1 (2001), 335–372. https://doi.org/10.1023/A:1016734104787

[9] Brian Day. 1970. Construction of Biclosed Categories. Ph. D. Dissertation.
[10] C. Dellacherie and P.-A. Meyer. 2011. Probabilities and Potential, C: Potential Theory for Discrete and Continuous Semigroups. North-Holland

Mathematics Studies, Vol. 161. Elsevier Science.

[11] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. 2018. Approximation and dependence via multiteam semantics.

Annals of Mathematics and Artificial Intelligence 83, 3 (2018), 297–320. https://doi.org/10.1007/s10472-017-9568-4

[12] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. 2018. Probabilistic team semantics. In International Symposium on
Foundations of Information and Knowledge Systems. Springer, 186–206.

[13] Marcelo Fiore and Matías Menni. 2005. Reflective Kleisli subcategories of the category of Eilenberg-Moore algebras for factorization monads.

Theory and Applications of Categories [electronic only] 15 (2005), 40–65. http://eudml.org/doc/125160

[14] Murdoch J. Gabbay and Andrew M. Pitts. 2002. A New Approach to Abstract Syntax with Variable Binding. Formal Aspects of Computing 13, 3

(2002), 341–363. https://doi.org/10.1007/s001650200016

[15] Dan Geiger, Azaria Paz, and Judea Pearl. 1991. Axioms and algorithms for inferences involving probabilistic independence. Information and
Computation 91, 1 (1991), 128–141. https://doi.org/10.1016/0890-5401(91)90077-F

[16] Dan Geiger and Judea Pearl. 1993. Logical and Algorithmic Properties of Conditional Independence and Graphical Models. The Annals of Statistics
21, 4 (1993), 2001 – 2021. https://doi.org/10.1214/aos/1176349407

[17] Erich Grädel and Jouko Väänänen. 2013. Dependence and Independence. Studia Logica 101, 2 (2013), 399–410. https://doi.org/10.1007/s11225-013-

9479-2

[18] Miika Hannula and Juha Kontinen. 2016. A finite axiomatization of conditional independence and inclusion dependencies. Information and
Computation 249 (2016), 121–137. https://doi.org/10.1016/j.ic.2016.04.001

[19] Jaakko Hintikka and Gabriel Sandu. 1989. Informational Independence as a Semantical Phenomenon. In Logic, Methodology and Philosophy of
Science VIII, Jens Erik Fenstad, Ivan T. Frolov, and Risto Hilpinen (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 126. Elsevier,

571–589. https://doi.org/10.1016/S0049-237X(08)70066-1

[20] W. Hodges. 1997. Compositional Semantics for a Language of Imperfect Information. Logic Journal of the IGPL 5, 4 (1997), 539–563. https:

//doi.org/10.1093/jigpal/5.4.539

[21] Tapani Hyttinen, Gianluca Paolini, and Jouko Väänänen. 2017. A logic for arguing about probabilities in measure teams. Archive for Mathematical
Logic 56, 5 (2017), 475–489. https://doi.org/10.1007/s00153-017-0535-x

[22] Janez Ignacij Jereb and Alex Simpson. 2025. Safety, Relative Tightness and the Probabilistic Frame Rule. Electronic Notes in Theoretical Informatics
and Computer Science Volume 5 - Proceedings of MFPS XLI, Article 12 (Dec 2025). https://doi.org/10.46298/entics.16743

[23] Peter T Johnstone. 2002. Sketches of an elephant: a Topos theory compendium. Oxford Univ. Press, New York, NY. https://cds.cern.ch/record/592033

[24] Olav Kallenberg. 1997. Foundations of Modern probability Theory (first edition ed.). Springer Cham.

[25] Dexter Kozen. 1981. Semantics of probabilistic programs. J. Comput. System Sci. 22, 3 (1981), 328–350. https://doi.org/10.1016/0022-0000(81)90036-2

[26] F. William Lawvere. 1969. Adjointness in Foundations. Dialectica 23, 3-4 (1969), 281–296. https://doi.org/10.1111/j.1746-8361.1969.tb01194.x

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1746-8361.1969.tb01194.x

[27] John M. Li, Amal Ahmed, and Steven Holtzen. 2023. Lilac: A Modal Separation Logic for Conditional Probability. Proc. ACM Program. Lang. 7, PLDI,
Article 112 (jun 2023), 24 pages. https://doi.org/10.1145/3591226

[28] John M. Li, Jon Aytac, Philip Johnson-Freyd, Amal Ahmed, and Steven Holtzen. 2024. A Nominal Approach to Probabilistic Separation Logic. In

39th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). ACM, New York, NY, USA. https://doi.org/10.1145/3661814.3662135

[29] Saunders Mac Lane and Ieke Moerdijk. 1992. Sheaves in Geometry and Logic a First Introduction to Topos Theory. Springer New York, New York, NY.

http://link.springer.com/book/10.1007/978-1-4612-0927-0

[30] Matías Menni. 2003. About N-quantifiers. Applied Categorical Structures 11, 5 (2003), 421–445. https://doi.org/10.1023/A:1025750816098

[31] Peter O’Hearn, John Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures. In Computer Science Logic,
Laurent Fribourg (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–19.

[32] Peter W. O’Hearn and David J. Pym. 1999. The Logic of Bunched Implications. The Bulletin of Symbolic Logic 5, 2 (1999), 215–244. http:

//www.jstor.org/stable/421090

[33] Judea Pearl and Azaria Paz. 1986. GRAPHOIDS: Graph-Based Logic for Reasoning about Relevance Relations OrWhen Would x Tell You More about

y If You Already Know z? Probabilistic and Causal Inference (1986). https://api.semanticscholar.org/CorpusID:262089256

[34] Andrew M Pitts. 2001. Categorical logic. In Handbook of Logic in Computer Science: Volume 5. Algebraic and Logical Structures. Oxford University

Press. https://doi.org/10.1093/oso/9780198537816.003.0002 arXiv:https://academic.oup.com/book/0/chapter/348287300/chapter-pdf/43264150/isbn-

9780198537816-book-part-5.pdf

[35] Andrew M. Pitts. 2013. Nominal Sets: Names and Symmetry in Computer Science. Cambridge University Press.

[36] David J. Pym, Peter W. O’Hearn, and Hongseok Yang. 2004. Possible worlds and resources: the semantics of BI. Theoretical Computer Science 315, 1
(2004), 257–305. https://doi.org/10.1016/j.tcs.2003.11.020 Mathematical Foundations of Programming Semantics.

[37] Alex Simpson. 2017. Probability Sheaves and the Giry Monad. https://api.semanticscholar.org/CorpusID:11927690

Manuscript submitted to ACM

https://doi.org/10.1023/A:1016734104787
https://doi.org/10.1007/s10472-017-9568-4
http://eudml.org/doc/125160
https://doi.org/10.1007/s001650200016
https://doi.org/10.1016/0890-5401(91)90077-F
https://doi.org/10.1214/aos/1176349407
https://doi.org/10.1007/s11225-013-9479-2
https://doi.org/10.1007/s11225-013-9479-2
https://doi.org/10.1016/j.ic.2016.04.001
https://doi.org/10.1016/S0049-237X(08)70066-1
https://doi.org/10.1093/jigpal/5.4.539
https://doi.org/10.1093/jigpal/5.4.539
https://doi.org/10.1007/s00153-017-0535-x
https://doi.org/10.46298/entics.16743
https://cds.cern.ch/record/592033
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1111/j.1746-8361.1969.tb01194.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1746-8361.1969.tb01194.x
https://doi.org/10.1145/3591226
https://doi.org/10.1145/3661814.3662135
http://link.springer.com/book/10.1007/978-1-4612-0927-0
https://doi.org/10.1023/A:1025750816098
http://www.jstor.org/stable/421090
http://www.jstor.org/stable/421090
https://api.semanticscholar.org/CorpusID:262089256
https://doi.org/10.1093/oso/9780198537816.003.0002
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/348287300/chapter-pdf/43264150/isbn-9780198537816-book-part-5.pdf
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/348287300/chapter-pdf/43264150/isbn-9780198537816-book-part-5.pdf
https://doi.org/10.1016/j.tcs.2003.11.020
https://api.semanticscholar.org/CorpusID:11927690


2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

46 Alex Simpson

[38] Alex Simpson. 2018. Category-theoretic Structure for Independence and Conditional Independence. Electronic Notes in Theoretical Computer Science
336 (2018), 281–297. https://doi.org/10.1016/j.entcs.2018.03.028 The Thirty-third Conference on the Mathematical Foundations of Programming

Semantics (MFPS XXXIII).

[39] Alex Simpson. 2024. Equivalence and Conditional Independence in Atomic Sheaf Logic. In Proceedings of the 39th Annual ACM/IEEE Symposium
on Logic in Computer Science (Tallinn, Estonia) (LICS ’24). Association for Computing Machinery, New York, NY, USA, Article 70, 14 pages.

https://doi.org/10.1145/3661814.3662132

[40] Wolfgang Spohn. 1980. Stochastic independence, causal independence, and shieldability. Journal of Philosophical Logic 9, 1 (1980), 73–99.

https://doi.org/10.1007/BF00258078

[41] Sam Staton. 2009. Two Cotensors in One: Presentations of Algebraic Theories for Local State and Fresh Names. Electronic Notes in Theoretical
Computer Science 249 (2009), 471–490. https://doi.org/10.1016/j.entcs.2009.07.103 Proceedings of the 25th Conference on Mathematical Foundations

of Programming Semantics (MFPS 2009).

[42] Jouko Väänänen. 2007. Dependence Logic: A New Approach to Independence Friendly Logic. Cambridge University Press.

[43] Hongseok Yang and Peter O’Hearn. 2002. A Semantic Basis for Local Reasoning. In Foundations of Software Science and Computation Structures,
Mogens Nielsen and Uffe Engberg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 402–416.

A Proof of Theorem 7.7

Recall that Theorem 7.7 states that every sheaf in Shat (Sur) has supports. The main tool needed to prove this is

Theorem A.1 below.

Theorem A.1. Every atomic sheaf 𝑃 ∈ Shat (Sur) maps pushouts in Sur to pullbacks in Set.

The proof of Theorem A.1 given below builds on Theorem 6.6. When I discussed this work with André Joyal, he told me

that he already knew Theorem A.1, and he kindly showed me his own proof, which is somewhat different in structure

from the argument given below.

Observe first that the category Sur has pushouts, and that these are defined as in Set. Observe also that, in any

commuting diagram in Sur of the form below, the outer kite is a pushout if and only if the right-hand square is a

pushout (because all maps in Sur are epimorphic).

•

• -

-

•

-

•
-

•

-

--

Lemma A.2. Suppose we have a commuting diagram as above in Sur. Let 𝑃 ∈ Psh(Sur) be a separated presheaf. Then
𝑃 maps the right-hand square to a pullback in Set if and only if it maps the outer kite to a pullback in Set.

Proof. Easy. □

Proof of Theorem A.1. A relation 𝑅 ⊆ Ω𝑋 × Ω𝑌 is said to be bitotal if:

∀𝜔𝑋 ∈ Ω𝑋 . ∃𝜔𝑌 ∈ Ω𝑌 , 𝜔𝑋𝑅𝜔𝑌 and ∀𝜔𝑌 ∈ Ω𝑌 . ∃𝜔𝑋 ∈ Ω𝑋 , 𝑥𝑅𝑦 .
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Let 𝑅 ⊆ Ω𝑋 × Ω𝑌 be a bitotal relation. Then the projections Ω𝑋
�𝑟

𝑅
𝑟 ′- Ω𝑌 form a span in Sur. Construct

the pushout

𝑅
𝑟- Ω𝑋

Ω𝑌

𝑟 ′

?

𝑞
- Ω𝑍

𝑝

?
(42)

For any 𝑛 ≥ 0 define 𝑅𝑛 ⊆ Ω𝑋 × Ω𝑋 and 𝑆𝑛 ⊆ Ω𝑋 × Ω𝑋 by: 𝑅0 := 𝑅 and 𝑆𝑛 = 𝑅−1 ◦ 𝑅𝑛 and 𝑅𝑛+1 := 𝑅 ◦ 𝑆𝑛 . Let
𝑟𝑛 : 𝑅𝑛 - Ω𝑋 and 𝑟 ′𝑛 : 𝑅𝑛 - Ω𝑌 be the first and second projections and similarly for 𝑠𝑛 : 𝑆𝑛 - Ω𝑋 and

𝑠′𝑛 : 𝑆𝑛 - Ω𝑋 . Alternatively, we can formulate this in diagrammatic terms, taking pullbacks for both top-left squares

below,

𝑈𝑛
𝑢′𝑛- 𝑅

𝑟- Ω𝑋 𝑇𝑛+1
𝑡 ′𝑛+1- 𝑅

𝑟 ′- Ω𝑌

𝑅𝑛

𝑢𝑛

?
𝑟 ′𝑛- Ω𝑌

𝑟 ′

?
.........

𝑞
- Ω𝑍

𝑝

?

.

.

.

.

.

.

.

.

.

𝑆𝑛

𝑡𝑛+1
?

𝑠′𝑛- Ω𝑋

𝑟

?
.........

𝑝
- Ω𝑍

𝑞

?

.

.

.

.

.

.

.

.

.

Ω𝑋

𝑟𝑛

?
........

𝑝

- Ω𝑍

𝑞

?

.

.

.

.

.

.

.

.

.

.........

idΩ𝑍

- Ω𝑍

idΩ𝑍
?

.

.

.

.

.

.

.

.

.

Ω𝑋

𝑠𝑛

?
........

𝑝

- Ω𝑍

𝑝

?

.

.

.

.

.

.

.

.

.

.........

idΩ𝑍

- Ω𝑍

idΩ𝑍
?

.

.

.

.

.

.

.

.

.

and defining the relations (𝑠𝑛, 𝑠′𝑛) : 𝑆𝑛- - Ω𝑋 × Ω𝑋 and (𝑟𝑛+1, 𝑟 ′𝑛+1) : 𝑅𝑛- - Ω𝑋 × Ω𝑋 as the following epi-mono

factorisations in Set

𝑈𝑛
𝑢𝑆
𝑛-- 𝑆𝑛-

(𝑠𝑛,𝑠′𝑛 )- Ω𝑋 × Ω𝑋 = 𝑈𝑛
(𝑟𝑛◦𝑢𝑛, 𝑟◦𝑢′𝑛 )- Ω𝑋 × Ω𝑋

𝑇𝑛+1
𝑡𝑅
𝑛+1-- 𝑅𝑛-

(𝑟𝑛+1,𝑟 ′𝑛+1 )- Ω𝑋 × Ω𝑌 = 𝑇𝑛+1
(𝑠𝑛◦𝑡𝑛+1, 𝑟 ′◦𝑡 ′𝑛+1 )- Ω𝑋 × Ω𝑌

We first claim that, for any 𝑛 ≥ 0, both diagrams below commute.

𝑆𝑛
𝑠𝑛- Ω𝑋 𝑅𝑛

𝑟𝑛- Ω𝑋

Ω𝑋

𝑠′𝑛
?

𝑝
- Ω𝑍

𝑝

?
Ω𝑌

𝑟 ′𝑛
?

𝑞
- Ω𝑍

𝑝

?
(43)

This first claim is proved by a straightforward induction on 𝑛. For example, one can use the induction hypothesis to

complete the diagrams involving𝑈𝑛 and 𝑇𝑛+1 above with the dotted arrows.

Our second claim is that, for some 𝑛 ≥ 0, the right-hand square of (43) is a pullback in Set. (The same holds for

the left-hand square, but we shall not need this.) This holds because the fibres of the pushout maps 𝑝 and 𝑞 from (42)

are the connected components in the bipartite graph 𝑅 ⊆ Ω𝑋 × Ω𝑌 restricted to Ω𝑋 and Ω𝑌 respectively, and the 𝑅𝑛

construction approximates the path relation from below, necessarily reaching a fixed point at some finite 𝑛.

Our third claim is that every atomic sheaf 𝑃 ∈ Shat (Sur) maps the pushout diagram (42) to a pullback in Set. For
this, let 𝑥 ∈ 𝑃 (Ω𝑋 ) and 𝑦 ∈ 𝑃 (Ω𝑌 ) be such that 𝑥 · 𝑟 = 𝑦 · 𝑟 ′. We prove, by induction on 𝑛 that 𝑥 · 𝑟𝑛 = 𝑦 · 𝑟 ′𝑛 and

𝑥 · 𝑠𝑛 = 𝑥 · 𝑠′𝑛 for all 𝑛. For 𝑛 = 0, we have 𝑟0 = 𝑟 and 𝑟 ′
0
= 𝑟 ′ so indeed 𝑥 · 𝑟0 = 𝑦 · 𝑟 ′

0
. Next, assuming 𝑥 · 𝑟𝑛 = 𝑦 · 𝑟 ′𝑛 ,

we show 𝑥 · 𝑠𝑛 = 𝑥 · 𝑠′𝑛 . For this, we have 𝑥 · 𝑠𝑛 · 𝑢𝑆𝑛 = 𝑥 · 𝑟𝑛 · 𝑢𝑛 = 𝑦 · 𝑟 ′𝑛 · 𝑢𝑛 = 𝑦 · 𝑟 ′ · 𝑢′𝑛 = 𝑥 · 𝑟 · 𝑢′𝑛 = 𝑥 · 𝑠′𝑛 · 𝑢𝑆𝑛 ;
whence by separatedness 𝑥 · 𝑠𝑛 = 𝑥 · 𝑠′𝑛 . Similarly, assuming 𝑥 · 𝑠𝑛 = 𝑥 · 𝑠′𝑛 , we show 𝑥 · 𝑟𝑛+1 = 𝑦 · 𝑟 ′

𝑛+1. For this, we

have 𝑥 · 𝑟𝑛+1 · 𝑡𝑅𝑛+1 = 𝑥 · 𝑠𝑛 · 𝑡𝑛+1 = 𝑥 · 𝑠′𝑛 · 𝑡𝑛+1 = 𝑥 · 𝑟 · 𝑡 ′
𝑛+1 = 𝑦 · 𝑟 ′ · 𝑡 ′

𝑛+1 = 𝑦 · 𝑟 ′
𝑛+1 · 𝑡

𝑅
𝑛+1; whence by separatedness
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𝑥 · 𝑟𝑛+1 = 𝑦 · 𝑟 ′
𝑛+1. This completes the argument by induction. The second claim above now gives us 𝑛 such that the

right-hand square of (43) is a pullback, in Set, hence an independent square in Sur. By Theorem 6.6, the square is

mapped by 𝑃 to a pullback in Set. By the statement proved by induction, 𝑥 · 𝑟𝑛 = 𝑦 · 𝑟 ′𝑛 . So, by the pullback property in

Set, there exists a unique 𝑧 ∈ 𝑃 (Ω𝑍 ) such that 𝑧 ◦ 𝑝 = 𝑥 and 𝑧 ◦ 𝑞 = 𝑦, which is what we needed to show to establish

the third claim.

We now establish the property asserted by the theorem. Consider any pushout diagram in Sur.

Ω𝑉
𝑠- Ω𝑋

Ω𝑌

𝑡

?

𝑞
- Ω𝑍

𝑝

?

Define 𝑅 ⊆ Ω𝑋 × Ω𝑌 to be the image (𝑠, 𝑡) (Ω𝑉 ). Since 𝑠, 𝑡 are surjective, 𝑅 is bitotal. By the observations at the start of

this section, (42) is also a pushout. By the third claim above, 𝑃 maps (42) to a pullback in Set. This property transfers to

the original pushout, by Lemma A.2. □

Proof of Theorem 7.7. Given a sheaf 𝑃 ∈ Shat (Sur) and element 𝑥 ∈ 𝑃 (Ω𝑋 ), the support is obtained by taking

a joint pushout in Sur of all (inequivalent) representable factorisations of 𝑥 , of which there are only finitely many

(because there are only finitely many partitions of Ω𝑋 ). By Theorem A.1, this joint pushout is itself a representable

factorisation of 𝑥 . □

B Validity of axioms (28) and (29) from Figure 4

The lemma below establishes the validity of axiom (28).

Lemma B.1. Suppose (𝑥, (𝑦, 𝑧),𝑤) ∈ ⊥⊥𝐴, 𝐵×𝐶 | 𝐷 (𝑋 ) then (𝑥,𝑦, (𝑧,𝑤)) ∈ ⊥⊥𝐴,𝐵 |𝐶×𝐷 (𝑋 ).

Proof. If (𝑥, (𝑦, 𝑧),𝑤) ∈ ⊥⊥𝐴, 𝐵×𝐶 | 𝐷 (𝑋 ) then we have a hybrid diagram

𝑋
𝑝- 𝑋𝑥𝑤

(𝑥 ′,𝑢′ )- 𝐴 × 𝐷

⊥⊥

𝑋𝑦𝑧𝑤

𝑞

?

𝑠
- 𝑋𝑤

𝑟

?

𝐵 ×𝐶 × 𝐷

(𝑦′,𝑧′,𝑣′ )
?

𝜋2

- 𝐷

𝜋2

?𝑤′ -

where 𝑥 ′ · 𝑝 = 𝑠 and 𝑦′ · 𝑞 = 𝑦 and 𝑧′ · 𝑞 = 𝑧 and (𝑋𝑤 , 𝑟 ◦ 𝑝, 𝑤 ′) is support for 𝑤 and, without loss of generality,

(𝑋𝑥𝑤 , 𝑝, (𝑥 ′, 𝑢′)) is support for (𝑥, 𝑧) and (𝑋𝑦𝑧𝑤 , 𝑞, (𝑦′, 𝑧′, 𝑣 ′)) is support for (𝑦, 𝑧,𝑤).
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The independent square in the diagram above can be factorised as a composite of two commuting squares as in the

top row below

𝑋
𝑝′- 𝑋𝑥𝑧𝑤

𝑝′′- 𝑋𝑥𝑤

𝑋𝑦𝑧𝑤

𝑞

?

𝑠′
- 𝑋𝑧𝑤

𝑡

?

𝑠′′
- 𝑋𝑤

𝑟

?

𝑋𝑧𝑤

𝑠′

?

id
- 𝑋𝑧𝑤

id
?

𝑠′′
- 𝑋𝑤

id
?

(44)

where all objects are defined as the supports indicated by their names. For example, (𝑋𝑧𝑤 , 𝑠
′ ◦ 𝑞, (𝑧′′,𝑤 ′′)) is support

for (𝑧,𝑤) and (𝑋𝑥𝑧𝑤 , 𝑝
′, (𝑥 ′ · 𝑝′′, 𝑧′′ · 𝑡, 𝑢′ · 𝑝′′)) is support for (𝑥, 𝑧,𝑤). We show that the top-right square is an

independent pullback.

To see it is independent, observe that the full composite square (44) above is a composite of an independent top-row

rectangle with the two independent squares in the bottom row. So (44) is independent. That is, the square

𝑋
𝑝′′◦𝑝′- 𝑋𝑥𝑤

𝑋𝑧𝑤

𝑡◦𝑝′
?

𝑠′′
- 𝑋𝑤

𝑟

?

is independent. It thus follows from the descent property that the top-right square in (44) is independent.

For the independent pullback property, consider any independent pullback of 𝑟 along 𝑠′′

𝑌
ℎ- 𝑋𝑥𝑤

𝑋𝑧𝑤

𝑘

?

𝑠′′
- 𝑋𝑤

𝑟

?

Since the top-right square of (44) is independent, there exists 𝑗 : 𝑋𝑥𝑧𝑤 → 𝑌 such that 𝑘 ◦ 𝑗 = 𝑡 and 𝑗 ◦ℎ = 𝑝′′. This gives

us a representable factorisation (𝑌, 𝑗 ◦ 𝑝′, (𝑥 ′ · ℎ, 𝑧′′ · 𝑘, 𝑢′ · ℎ)) of (𝑥, 𝑧,𝑤). Since (𝑋𝑥𝑧𝑤 , 𝑝
′, (𝑥 ′ · 𝑝′′, 𝑧′′ · 𝑡, 𝑢′ · 𝑝′′))

is support for (𝑥, 𝑧,𝑤), we obtain a map 𝑖 : 𝑌 → 𝑋𝑥𝑧𝑤 of representable factorisations. However 𝑗 is also a map of

representable factorisations in the opposite direction, so 𝑖 and 𝑗 are mutual inverses. Thus the top-right square in (44) is

indeed an independent pullback.

Since the top-row rectangle of (44) is independent and the top-right square an independent pullback it follows that

the top-left square is independent. Using this, we form the hybrid diagram

𝑋
𝑝′- 𝑋𝑥𝑧𝑤

(𝑥 ′ ·𝑝′′, 𝑧′′ ·𝑡,𝑢′ ·𝑝′′ )- 𝐴 ×𝐶 × 𝐷

⊥⊥

𝑋𝑦𝑧𝑤

𝑞

?

𝑠′
- 𝑋𝑧𝑤

𝑡

?

𝐵 ×𝐶 × 𝐷

(𝑦′,𝑧′,𝑣′ )
?

𝜋2,3

- 𝐷

𝜋2,3

?(𝑧′′,𝑤′′ ) -

showing that indeed (𝑥,𝑦, (𝑧,𝑤)) ∈ ⊥⊥𝐴,𝐵 |𝐶×𝐷 (𝑋 ). □
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The lemma below establishes the validity of axiom (29).

Lemma B.2. Suppose (𝑥,𝑦, (𝑧,𝑤)) ∈ ⊥⊥𝐴,𝐵 |𝐶×𝐷 (𝑋 ) and (𝑥, 𝑧,𝑤) ∈ ⊥⊥𝐴,𝐶 | 𝐷 (𝑋 ) then (𝑥, (𝑦, 𝑧),𝑤) ∈ ⊥⊥𝐴, 𝐵×𝐶 | 𝐷 (𝑋 ).

Proof. The assumption (𝑥,𝑦, (𝑧,𝑤)) ∈ ⊥⊥𝐴,𝐵 |𝐶×𝐷 (𝑋 ) gives us:

𝑋
𝑝- 𝑋𝑥𝑧𝑤

(𝑥 ′,𝑢′𝑧 ,𝑢′𝑤 )- 𝐴 ×𝐶 × 𝐷

⊥⊥

𝑋𝑦𝑧𝑤

𝑞

?

𝑠
- 𝑋𝑧𝑤

𝑟

?

𝐵 ×𝐶 × 𝐷

(𝑦′,𝑣′𝑧 ,𝑣′𝑤 )
?

𝜋2,3

- 𝐶 × 𝐷

𝜋2,3

?(𝑧′,𝑤′ ) -

(45)

where 𝑥 ′ · 𝑝 = 𝑥 and 𝑦′ · 𝑞 = 𝑦 and (𝑋𝑧𝑤 , 𝑟 ◦ 𝑝, (𝑧′,𝑤 ′)) is support for (𝑧,𝑤) and, without loss of generality,

(𝑋𝑥𝑧𝑤 , 𝑝, (𝑥 ′, 𝑢′𝑧 , 𝑢′𝑤)) is support for (𝑥, 𝑧,𝑤) and (𝑋𝑦𝑧𝑤 , 𝑞, (𝑦′, 𝑣 ′𝑧 , 𝑣 ′𝑤)) is support for (𝑦, 𝑧,𝑤).
Similarly, the assumption (𝑥, 𝑧,𝑤) ∈ ⊥⊥𝐴,𝐶 | 𝐷 (𝑋 ) gives us:

𝑋
𝑝′- 𝑋𝑥𝑤

(𝑥 ′′,𝑢′′𝑤 )- 𝐴 × 𝐷

⊥⊥

𝑋𝑧𝑤

𝑟◦𝑝
?

𝑠′
- 𝑋𝑤

𝑟 ′

?

𝐶 × 𝐷

(𝑧′,𝑤′ )
?

𝜋2

- 𝐷

𝜋2

?𝑤′′ -

(46)

where𝑥 ′′·𝑝′ = 𝑥 and 𝑧′′·𝑞′ = 𝑧 and (𝑋𝑤 , 𝑟
′◦𝑝′, 𝑤 ′′) is support for𝑤 and, without loss of generality, (𝑋𝑥𝑤 , 𝑝

′, (𝑥 ′′, 𝑢′′𝑤))
is support for (𝑥,𝑤) and we can use 𝑟 ◦ 𝑝 because (𝑋𝑧𝑤 , 𝑟 ◦ 𝑝, (𝑧′,𝑤 ′)) is support for (𝑧,𝑤).

Exploiting the support property of 𝑋𝑥𝑤 , we obtain 𝑝′′ in

𝑋
𝑝- 𝑋𝑥𝑧𝑤

𝑝′′- 𝑋𝑥𝑤

𝑋𝑦𝑧𝑤

𝑞

?

𝑠
- 𝑋𝑧𝑤

𝑟

?

𝑠′
- 𝑋𝑤

𝑟 ′

?

such that 𝑝′′ ◦𝑝 = 𝑝′. The left-hand square above is the independent square from (45). Since 𝑝′′ ◦𝑝 = 𝑝′, the right-hand

square is also independent, by descent along 𝑝 from the independent square in (46). So the composite rectangle is

independent.
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The composite rectangle provides the independent square in

𝑋
𝑝′- 𝑋𝑥𝑤

(𝑥 ′′,𝑢′𝑤 )- 𝐴 × 𝐷

⊥⊥

𝑋𝑦𝑧𝑤

𝑞

?

𝑠′◦𝑠
- 𝑋𝑤

𝑟

?

′

𝐵 ×𝐶 × 𝐷

(𝑦′,𝑣′𝑧 ,𝑣′𝑤 )
?

𝜋3

- 𝐷

𝜋2

?𝑤′′ -

showing that (𝑥, (𝑦, 𝑧),𝑤) ∈ ⊥⊥𝐴, 𝐵×𝐶 | 𝐷 (𝑋 ) as required. □

C Proof of Proposition 8.12

The goal of the section is to prove Proposition 8.12, which states that Definition 8.11 endows SBP0 with independent

pullback structure satisfying the descent property.

Recall that Definition 8.11 defines a commuting square (37) in SBP0 to be independent if 𝑝 ⊥⊥𝑞 | 𝑟 ◦ 𝑝 according

to Definition 8.7. Since the square is commuting, the property in Definition 8.7 simplifies to: for every 𝑆 ∈ BΩ𝑌
and

𝑇 ∈ BΩ𝑍
, and for 𝑃Ω𝑊

-almost all 𝜔 ∈ Ω𝑊 ,

𝑃 (𝑟◦𝑝 )−1 (𝜔 ) (𝑝−1 (𝑆) ∩ 𝑞−1 (𝑇 )) = 𝑃𝑟 −1 (𝜔 ) (𝑆) · 𝑃𝑠−1 (𝜔 ) (𝑇 ) . (47)

The key proposition below characterises the independence of (37) as being equivalent to 𝑝 , considered as a map on

fibre sets 𝑞−1 (𝜔𝑍 ) → 𝑟−1 (𝑠 (𝜔𝑍 )), preserving the disintegration-induced probability measures, for almost all 𝜔𝑍 .

Proposition C.1. A commuting square in SBP0 (37) is independent if and only if, for 𝑃Ω𝑍
-almost-all 𝜔𝑍 ∈ Ω𝑍 , it

holds that 𝑝∗ (𝑃𝑞−1 (𝜔𝑍 ) ) = 𝑃𝑟 −1 (𝑠 (𝜔𝑍 ) ) .

Proof. We first prove the right-to-left implication. Accordingly, suppose 𝑝∗ (𝑃𝑞−1 (𝜔𝑍 ) ) = 𝑃𝑟 −1 (𝑠 (𝜔𝑍 ) ) holds for

𝑃Ω𝑍
-almost-all 𝜔𝑍 ∈ Ω𝑍 . For 𝑃Ω𝑊

-almost every 𝜔 ∈ Ω𝑊 , we prove (47) by

𝑃 (𝑟◦𝑝 )−1 (𝜔 ) (𝑝−1 (𝑆) ∩ 𝑞−1 (𝑇 ))

=

∫
𝑃𝑞−1 (𝜔𝑍 ) (𝑝

−1 (𝑆) ∩ 𝑞−1 (𝑇 )) d𝑃𝑠−1 (𝜔 ) (𝜔𝑍 )

=

∫
1𝑇 (𝜔𝑍 ) · 𝑃𝑞−1 (𝜔𝑍 ) (𝑝

−1 (𝑆)) d𝑃𝑠−1 (𝜔 ) (𝜔𝑍 )

=

∫
1𝑇 (𝜔𝑍 ) · 𝑃𝑟 −1 (𝑠 (𝜔𝑍 ) ) (𝑆) d𝑃𝑠−1 (𝜔 ) (𝜔𝑍 ) because 𝑝∗ (𝑃𝑞−1 (𝜔𝑍 ) ) = 𝑃𝑟 −1 (𝑠 (𝜔𝑍 ) )

=

∫
1𝑇 (𝜔𝑍 ) · 𝑃𝑟 −1 (𝜔 ) (𝑆) d𝑃𝑠−1 (𝜔 ) (𝜔𝑍 )

= 𝑃𝑟 −1 (𝜔 ) (𝑆) ·
∫

1𝑇 (𝜔𝑍 ) d𝑃𝑠−1 (𝜔 ) (𝜔𝑍 )

= 𝑃𝑟 −1 (𝜔 ) (𝑆) · 𝑃𝑠−1 (𝜔 ) (𝑇 ) .

For the left-to-right implication, suppose (47) holds, for 𝑃Ω𝑊
-almost every 𝜔 ∈ Ω𝑊 . Note that, for any 𝑆 ∈ BΩ𝑌

the

function

𝑇 ↦→
∫

1𝑇 (𝜔𝑍 ) · 𝑃𝑞−1 (𝜔𝑍 ) (𝑝
−1 (𝑆)) d𝑃Ω𝑍

(𝜔𝑍 )
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is a measure BΩ𝑍
→ [0, 1] with density

𝜔𝑍 ↦→ 𝑃𝑞−1 (𝜔𝑍 ) (𝑝
−1 (𝑆)) .

Similarly, the function

𝑇 ↦→
∫

1𝑇 (𝜔𝑍 ) · 𝑃𝑟 −1 (𝑠 (𝜔𝑍 ) ) (𝑆) d𝑃Ω𝑍
(𝜔𝑍 )

is a measure with density

𝜔𝑍 ↦→ 𝑃𝑟 −1 (𝑠 (𝜔𝑍 ) ) (𝑆) .

Below we prove∫
1𝑇 (𝜔𝑍 ) · 𝑃𝑞−1 (𝜔𝑍 ) (𝑝

−1 (𝑆)) d𝑃Ω𝑍
(𝜔𝑍 ) =

∫
1𝑇 (𝜔𝑍 ) · 𝑃𝑟 −1 (𝑠 (𝜔𝑍 ) ) (𝑆) d𝑃Ω𝑍

(𝜔𝑍 ) , (48)

which establishes that the two measures are equal, and hence their densities are almost surely equal. That is, for 𝑃Ω𝑍
-

almost-all𝜔𝑍 ∈ Ω𝑍 , we have 𝑃𝑞−1 (𝜔𝑍 ) (𝑝
−1 (𝑆)) = 𝑃𝑟 −1 (𝑠 (𝜔𝑍 ) ) (𝑆), for all 𝑆 ∈ BΩ𝑌

. That is, 𝑝∗ (𝑃𝑞−1 (𝜔𝑍 ) ) = 𝑃𝑟 −1 (𝑠 (𝜔𝑍 ) ) ,

as required.

It remains to prove (48). For this, we calculate∫
1𝑇 (𝜔𝑍 ) · 𝑃𝑟 −1 (𝑠 (𝜔𝑍 ) ) (𝑆) d𝑃Ω𝑍

(𝜔𝑍 )

=

∫ ∫
1𝑇 (𝜔𝑍 ) · 𝑃𝑟 −1 (𝑠 (𝜔𝑍 ) ) (𝑆) d𝑃𝑠−1 (𝜔 ) (𝜔𝑍 ) d𝑃Ω (𝜔)

=

∫ ∫
1𝑇 (𝜔𝑍 ) · 𝑃𝑟 −1 (𝜔 ) (𝑆) d𝑃𝑠−1 (𝜔 ) (𝜔𝑍 ) d𝑃Ω (𝜔)

=

∫
𝑃𝑟 −1 (𝜔 ) (𝑆) ·

(∫
1𝑇 (𝜔𝑍 ) d𝑃𝑠−1 (𝜔 ) (𝜔𝑍 )

)
d𝑃Ω (𝜔)

=

∫
𝑃𝑟 −1 (𝜔 ) (𝑆) · 𝑃𝑠−1 (𝜔 ) (𝑇 ) d𝑃Ω (𝜔)

=

∫
𝑃 (𝑠◦𝑞)−1 (𝜔 ) (𝑝−1 (𝑆) ∩ 𝑞−1 (𝑇 )) d𝑃Ω (𝜔) by (47)

=

∫ ∫
𝑃𝑞−1 (𝜔𝑍 ) (𝑝

−1 (𝑆) ∩ 𝑞−1 (𝑇 )) d𝑃𝑠−1 (𝜔 ) (𝜔𝑍 ) d𝑃Ω (𝜔)

=

∫ ∫
1𝑇 (𝜔𝑍 ) · 𝑃𝑞−1 (𝜔𝑍 ) (𝑝

−1 (𝑆)) d𝑃𝑠−1 (𝜔 ) (𝜔𝑍 ) d𝑃Ω (𝜔)

=

∫
1𝑇 (𝜔𝑍 ) · 𝑃𝑞−1 (𝜔𝑍 ) (𝑝

−1 (𝑆)) d𝑃Ω𝑍
(𝜔𝑍 ) .

For any fixed 𝑆 ∈ BΩ𝑌
the function mapping any 𝑇 to the left-hand side of (48) is clearly a measure BΩ𝑍

→ [0, 1]. □

We now verify that independent squares in SBP0 indeed satisfy the axioms for independent pullback structure.

Axioms (IP1) and (IP2) are straightforward. Axiom (IP3) is an easy consequence of Proposition C.1. For Axiom (IP5),

it is not difficult to verify that (38) indeed constructs an independent pullback square. The descent property is also

straightforward. This leaves us with (IP4), which is established in greater generality by the proposition below.

Manuscript submitted to ACM



2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

Equivalence and Conditional Independence in Atomic Sheaf Logic 53

Proposition C.2. In a commuting diagram in SBP0 as below, if both the composite rectangle (AB) and right-hand

square (B) are independent and [𝑞], [𝑡] are also jointly monic, then the left-hand square (A) is independent.

Ω𝑋
[𝑠 ]- Ω𝑌

[𝑡 ]- Ω𝑍

(𝐴) (𝐵)

Ω𝑈

[𝑝 ]
?

[𝑢 ]
- Ω𝑉

[𝑞 ]
?

[𝑣 ]
- Ω𝑊

[𝑟 ]
?

Proof. We use Proposition C.1 to prove that (A) is independent. That is, we show that, for 𝑃Ω𝑈
-almost-all 𝜔𝑈 ∈ Ω𝑈 ,

and for all 𝐶 ∈ BΩ𝑌
,

𝑃𝑝−1 (𝜔𝑈 ) (𝑠
−1 (𝐶)) = 𝑃𝑞−1 (𝑢 (𝜔𝑈 ) ) (𝐶) . (49)

We show this first for 𝐶 of the form 𝑡−1 (𝐴) ∩ 𝑞−1 (𝐵), where 𝐴 ∈ BΩ𝑍
and 𝐵 ∈ BΩ𝑉

. In this case, we have

𝑃𝑝−1 (𝜔𝑈 ) (𝑠
−1𝑡−1 (𝐴) ∩ 𝑠−1𝑞−1 (𝐵))

= 𝑃𝑝−1 (𝜔𝑈 ) (𝑠
−1𝑡−1 (𝐴) ∩ 𝑝−1𝑢−1 (𝐵))

= 1𝑢−1 (𝐵) (𝜔𝑈 ) · 𝑃𝑝−1 (𝜔𝑈 ) (𝑠
−1𝑡−1 (𝐴))

= 1𝐵 (𝑢 (𝜔𝑈 )) · 𝑃𝑝−1 (𝜔𝑈 ) (𝑠
−1𝑡−1 (𝐴))

= 1𝐵 (𝑢 (𝜔𝑈 )) · 𝑃𝑟 −1 (𝑣 (𝑢 (𝜔𝑈 ) ) ) (𝐴) by Proposition C.1 for (AB)

= 1𝐵 (𝑢 (𝜔𝑈 )) · 𝑃𝑞−1 (𝑢 (𝜔𝑈 ) ) (𝑡
−1 (𝐴)) by Proposition C.1 for (B)

= 𝑃𝑞−1 (𝑢 (𝜔𝑈 ) ) (𝑡
−1 (𝐴) ∩ 𝑞−1 (𝐵)) .

The joint monicity of [𝑞] and [𝑡] means that the there is a measure 1 set 𝑆 ∈ BΩ𝑌
such that the paired function

(𝑡, 𝑞) : 𝑆 → Ω𝑍 ×Ω𝑉 is injective. Since 𝑆 ⊆ Ω𝑌 is Borel, the standard Borel structure on Ω𝑌 restricts to 𝑆 , and (𝑡, 𝑞) is a
measurable embedding of the standard Borel space 𝑆 into the product standard Borel space Ω𝑍 × Ω𝑉 . Thus every Borel

subset of 𝑆 is the restriction of a Borel subset of Ω𝑍 × Ω𝑉 . Since the 𝜎-algebra of Borel subsets of Ω𝑍 × Ω𝑉 is generated

by Borel rectangles 𝐴 × 𝐵, it follows that the Borel subsets of 𝑆 are generated by sets of the form 𝑆 ∩ (𝑡−1 (𝐴) ∩𝑞−1 (𝐵)).
Moreover, such sets are closed under finite intersections.

The left-hand and right-hand sides of (49) define measures 𝐶 ↦→ 𝑃𝑝−1 (𝜔𝑈 ) (𝑠
−1 (𝐶)) and 𝑃𝑞−1 (𝑢 (𝜔𝑈 ) ) respectively.

By the equality we have shown for 𝐶 of the form 𝑡−1 (𝐴) ∩ 𝑞−1 (𝐵), these measures agree on a generating set for BΩ𝑌

(restricted to 𝑆) that is closed under finite intersections. The two measures are therefore equal. This proves (49). □
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