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A mathematical theory of true randomness

Part 1

Motivation and axioms



A hierarchy of randomness notions

§ Pseudo randomness (mainstream mathematics, computational
complexity)

Sieve methods in number theory, Szemerédi regularity lemma,
expander graphs, pseudo-random-number generators, . . .
[Tao, Maynard, Szemerédi, Wigderson, . . . ]

§ Algorithmic randomness (computability theory)

Kolmogorov complexity, Martin-Löf statistical tests, Chaitin’s
Ω, Schnorr martingales, . . .

§ Set-theoretic randomness (set theory)

Solovay random reals

§ True randomness (physics? the Platonic universe!)

The topic we address!



Prologue

Let r , s P t0, 1uω be two sequences generated independently by
repeated (independent) tosses of a fair coin.

Consider the following statements relating r to probability 1 sets.

r P t0, 1uω´tru r P t0, 1uω´t0ωu r P t0, 1uω´tsu

The first is a trivial mathematical falsehood. The other two are
facts of empirical experience, but are not normally considered as
mathematical truths.

Including a primitive independence relation in the mathematical
universe allows us to define randomness and to turn statements 2
and 3 into mathematical truths reflecting intrinsic properties of
randomness.

A closely related programme was followed by Michiel van
Lambalgen [JSL 1990 & 1992]. We discuss his work at the end.



Intuitions for independence

Intuitively, x KK y means that x and y could be obtained
respectively by two different mathematicians who tap into two
independent random sources.

E.g., independently tossing a fair coin and a die:

001101111001010010000 . . . KK 326612513416251155412 . . .

Two sequences obtained from the above, by setting even positions
to 1 in the first, and applying δ6 to the second.

011101111101010111010 . . . KK 001100000001000000000 . . .

Anything in the universe with anything definable:

x KK π



Using independence, we give a definition of randomness.

Define r P t0, 1uω to be random if:

for every probability 1 subset X Ď t0, 1uω that is
independent of r , we have r P X .

In symbols:

Ranprq ðñ

@X Ď t0, 1uω. λpX q “ 1 and X KK r implies r P X

where λ is the uniform probability measure on t0, 1uω.



Let r , s P t0, 1uω be two independent random sequences; that is,
Ranprq, Ranpsq and s KK r . Then

t0, 1uω´t0ωuKK r t0, 1uω´tsuKK r

(applying the principle: x KK y and f definable ùñ f pxqKK y).

So we indeed obtain:

r P t0, 1uω´t0ωu r P t0, 1uω´tsu

In contrast, since r R t0, 1uω´tru, it follows that t0, 1uω´truKK{ r ,
whence r KK{ r .

For every random r , it holds that r KK{ r .



Axioms for independence

Axiom I1. x KK 0

Axiom I2. x KK y implies y KK x

Axiom I3. For y P t0, 1uω, if px , yqKK z and x KK y then x KKpy , zq

Axiom I4.

pDy φpx , yqq Ñ @z px KK z Ñ Dy 1 py 1KK z ^ φpx , y 1qqq

(where property φpx , yq depends only on x , y)

These axioms will be subsumed later by axioms for a more general
conditional independence relation.



Determined and uncertain elements

We say x is determined if x KK x .
We say x is uncertain if x KK{ x .

Lemma A If x is definable (by a formula φpzq s.t. D!z φpzq) then x
is determined.

Lemma B If x is determined then y KK x , for all y .

Proof Suppose x is such that there exists y with y KK{ x . We show
that x is uncertain.

By I4, for any z with x KK z , there exists y with y KK z and y KK{ x .

Setting z “ x , we have that x KK x implies there exists y with
y KK x and y KK{ x , which is a contradiction.

So x KK{ x as required.



Lemma C Suppose x P X with x KKX . For any y , there exists
x 1 P X with x 1KK y .

Proof Suppose x P X and x KKX .

Suppose, for contradiction, that there exists y for which there is no
x 1 P X with x 1KK y

Since X KK x , by I4, there exists y such that y KK x and there is no
x 1 P X with x 1KK y

But x P X and x KK y ; a contradiction!



Failure of AC

Theorem [cf. van Lambalgen] If there exists an uncertain
r P t0, 1uω then the set t0, 1uω has no well-ordering.

Proof Let Unc Ď t0, 1uω be the subset of uncertain sequences. By
assumption there exists r P Unc. Since Unc is definable, we have
r KKUnc. So, by Lemma C, for any y , there exists r 1 P Unc such
that r 1KK y .

In particular, for any well-order ă on t0, 1uω, there exists s P Unc
such that s KKă, hence there is a smallest such s under ă. This
gives a definable function mapping any well-order ă of t0, 1uω to
the ă-smallest să such that să P Unc and săKKă.

Now suppose for contradiction that there exists a well-order ă1 on
t0, 1uω. We have să1 P Unc and ă1KK să1 . By I4, independence is
preserved under application of the function ă ÞÑ să. Hence
să1 KK să1 , which contradicts să1 P Unc.



We take ZF+DC as our ambient set theory, in the language with
P,KK as primitive relations and with Axioms I1–I4 added.

The relaxation of AC to DC allows us to assume a probability
measure λ : Ppt0, 1uωq Ñ r0, 1s defined on the full powerset.

Every w P t0, 1u˚ determines a cylinder set xwy Ď t0, 1uω by
xwy :“ ts P t0, 1uω | sæ|w | “ wu. The cylinder sets form a basis
for the product topology on t0, 1uω (Cantor space). Every open set
arises as a disjoint union of cylinders, and finite (disjoint) unions of
cylinders are exactly the clopen subsets of t0, 1uω.

Definition A probability measure λ : Ppt0, 1uωq Ñ r0, 1s is near
Borel if (the two statements are equivalent):

§ for any X Ď t0, 1uω with there exists Borel B Ď t0, 1uω such
that λpX∆Bq “ 0; or equivalently,

§ for any X Ď t0, 1uω and ε ą 0, there exists clopen
A Ď t0, 1uω s.t. λpX∆Aq ă ε.



Axiom of near-Borel measurability

Axiom of near-Borel measurability

There exists a near-Borel measure λ : Ppt0, 1uωq Ñ r0, 1s
satisfying: for every w P t0, 1u˚, λ xwy “ 2´|w |.

Remarks

§ The existence of a probability measure λ on the full powerset
Ppt0, 1uωq is a mathematical idealisation.

§ The near-Borel condition, especially in its approximation form,
tempers the idealisation with a connection to meaningful sets.

§ The near-Borel condition is weaker than asking for every
subset of t0, 1uω to be Lebesgue measurable.

§ λ is an extension of Lebesgue measure.



Randomness and statistical testability

Definition (randomness) We say that r P t0, 1uω is random
(notation Ranprq) if (the two statements are equivalent):

§ for any X Ď t0, 1uω with λpX q “ 1, if X KK r then r P X ;

§ for any X Ď t0, 1uω, if X KK r and r P X then λpX q ą 0.

A statistical non-randomness test is a sequence pUnqně0 of open
subsets of t0, 1uω such that limnÑ8 λpUnq “ 0. We say that
s P t0, 1uω satisfies the test if s P

Ş

n Un.

Proposition If s P t0, 1uω satisfies a statistical non-randomness
test pUnqně0 for which pUnqně0KK s then s is non-random.



Borel randomness

Definition (Borel randomness)

We say that r P t0, 1uω is Borel random if (all statements are
equivalent):

§ for any Borel B Ď t0, 1uω with λpBq “ 1, if B KK r then r P B;

§ for any Fσ-set A Ď t0, 1uω with λpAq “ 1, if AKK r then r P A;

§ for any statistical non-randomness test pUnqně0 , if
pUnqně0KK r then r does not satisfy pUnqně0.

Proposition Randomness implies Borel randomness.



Axiom of statistical testability

Axiom of statistical testability

The following statements (which are equivalent) hold.

§ If s P t0, 1uω is non-random then it satisfies some statistical
non-randomness test pUnqně0 such that pUnqně0KK s.

§ Borel randomness implies randomness.

Remarks

§ The definition of randomness in terms of arbitrary subsets
X Ď t0, 1uω is a mathematical idealisation.

§ The statistical testability axiom tempers the idealisation with
a characterisation in more practical terms.



The existence of randomness

Axiom (Existence of enough random elements)

The following statements (which are all equivalent) hold.

1. For any closed A Ď t0, 1uω with λpAq ą 0, there exists r P A
such that Ranprq and AKK r .

2. For any Borel B Ď t0, 1uω with λpBq ą 0, there exists r P B
such that Ranprq and B KK r .

3. For any X Ď t0, 1uω with λpX q ą 0, there exists r P X such
that Ranprq and X KK r .

4. For any z and X Ď t0, 1uω with λpX q ą 0, there exists r P X
such that Ranprq and r KK z .



Proof that 2 ñ 3

2. For any Borel B Ď t0, 1uω with λpBq ą 0, there exists r P B
such that Ranprq and B KK r .

3. For any X Ď t0, 1uω with λpX q ą 0, there exists r P X such
that Ranprq and X KK r .

Let X Ď t0, 1uω be such that λpX q ą 0.

By the near-Borel property, there exists Borel B Ď t0, 1uω such
that λpB∆X q “ 0, so λpBq “ λpX q ą 0.

By 2, there exists r P B such that Ranprq and B KK r . Applying
Lemma C to the set ts P B | Ranpsqu, it follows that there exists
random r P B with pX ,BqKK r , hence also X KK r .

It remains to show that r P X . If not, we have r P B ´ X . Since
pX ,BqKK r , also B ´ X KK r . Because r is random, the conjunction
B ´ X KK r and r P B ´ X contradicts that λpB ´ X q “ 0.



A mathematical theory of true randomness

Part 2

Relative randomness and
consequences of the axioms



Review of Part 1

§ Axiomatic setting ZF+DC together with an independence
relation KK satisfying axioms I1–I5.

§ Axiom There exists a near Borel probability measure
λ : Ppt0, 1uωq Ñ r0, 1s extending the uniform Borel measure.

§ Definitions of random and Borel random element r P t0, 1uω:

§ for any X Ď t0, 1uω with λpX q “ 1, if X KK r then r P X

§ for any Borel B Ď t0, 1uω with λpBq “ 1, if B KK r then r P B

§ Axiom (testability) Borel random implies random

§ Axiom (enough randomness) For any X Ď t0, 1uω with
λpX q ą 0 and any z , there exists random r P X with r KK z .



Null sets

A subset X Ď t0, 1uω is null if λpX q “ 0.

§ If X has Borel outer measure 0 then it is null.

§ If X is null then it has Borel inner measure 0.

Neither of the above implications reverses unless all subsets are
Lebesgue measurable.

Null sets have a characterisation in terms of random elements.

Proposition The following are equivalent, for any X Ď t0, 1uω.

1. λpX q “ 0.

2. There is no random r P X with r KKX .

Proof 1 ñ 2 : by definition of randomness.

2 ñ 1 : by the existence of enough random points.



Proposition Suppose λ, λ1 are two near-Borel probability measures
assigning measure 2´|w | to every cylinder xwy. Suppose also that
the corresponding λ- and λ1-induced randomness notions satisfy
the testability and enough randomness axioms. Then λ “ λ1.

Proof λ and λ1 agree on Borel sets. So Borel randomness with
respect to λ and λ1 coincide, hence the same for randomness. By
the characterisation of null sets, it follows that a set is null with
respect to λ if and only if it is null with respect to λ1.

Let X Ď t0, 1uω be any subset. By the near-Borel property, there
exists Borel B Ď t0, 1uω such that λpX∆Bq “ 0. By the
coincidence of null sets, λ1pX∆Bq “ 0. So we have,

λpX q “ λpBq “ λ1pBq “ λ1pX q .



Lemma Every ordinal α is determined (i.e., αKKα).

Proof Suppose not. Then “the smallest uncertain ordinal” defines
an ordinal β. Since β is definable, it is determined!

Proposition Suppose pXα1qα1ăα is a family of null subsets of
t0, 1uω. Then

Ť

α1ăα Xα1 is also null.

Proof Suppose λp
Ť

α1ăα Xα1q ą 0. By enough randomness, there
exists random r P

Ť

α1ăα Xα1 with r KKpXα1qα1ăα. Let β be such
that r P Xβ. Since β is determined, we have r KKβ, pXα1qα1ăα,
whence r KKXβ by (I4). So we have random r P Xβ such that
r KKXβ, contradicting that Xβ is null,

Corollary λ is ℵ-additive; i.e., for any aleph ℵα and family
pXα1qα1ăℵα of pairwise disjoint subsets of t0, 1uω,

λ

˜

ď

α1ă ℵα

Xα

¸

“
ÿ

α1ă ℵα

λpXα1q .



Ran :“ ts P t0, 1uω | Ranpsqu

Indt :“ ts P t0, 1uω | s KK tu

Proposition λpRanq “ 1

Proof The complement λpt0, 1uω ´ Ranq contains no random
elements so is null.

Proposition λpIndtq “ 1

Proof Suppose λpIndtq ă 1. Then λpt0, 1uω ´ Indtq ą 0, so (by
existence of enough random elements) t0, 1uω ´ Indt contains a
random element s with s KK t, a contradiction.



Two notions of relative randomness

§ Generative relative randomness.

r is random and generated independently from z .

Ranprq and r KK z

§ Observable relative randomness.

r satisfies all probability 1 properties that are independent of r
in the presence of t.

Ranpr | tq

To define the latter, we replace our independence relation x KK y
with a more general conditional independence relation x KK y | z .



Conditional independence

Intuitively, x KK y | z means that x and y could be obtained
respectively by two different mathematicians, who tap into two
independent random sources, but who have shared knowledge of z .

E.g., three sequences obtained by independently tossing fair coins:

0011011110010 . . . KK 1000100111100 . . . | 0111101001011 . . .

Independence conditional on anything definable:

0011011110010 . . . KK 1000100111100 . . . | 0

is equivalent to unconditional independence:

0011011110010 . . . KK 1000100111100 . . .



There is no monotonicity with respect to conditioning.

We do have:

0011011110010 . . . KK 1000100111100 . . .

but we do not have:

0011011110010 . . . KK 1000100111100 . . . | 1011111001110 . . .

since each sequence can be obtained from the other two by xor.

We do not have:

0011011110010 . . . KK 1100100001101 . . .

since the sequences are bitwise complements, but we do have:

0011011110010 . . . KK 1100100001101 . . . | 1100100001101 . . .



Axioms for conditional independence

We axiomatise a conditional independence relation x KK y | z ,
where we require that z P pt0, 1uωqn for n ě 0.

Axiom CI1. x KK z | z

Axiom CI2. x KK y | z implies y KK x | z

Axiom CI3. If x KK y | z ,w and x KK z | w then x KK y , z | w

Axiom CI4. If x KK y , z | w then x KK y | z ,w

Axiom CI5.

pDy φpx , y , zqq Ñ @w pxKKw |z Ñ Dy 1 py 1KKw |z ^ φpx , y 1, zqqq

(where property φpx , y , zq depends only on x , y , z)

(Influenced by axiomatizations proposed in different contexts by
Dawid, by Spohn and by Geiger, Paz & Pearl.)



Relative randomness via observability

Definition (relative randomness) We say that r P t0, 1uω is random
relative to t P pt0, 1uωqn (notation Ranpr | tq) if (the two
statements are equivalent):

§ for any X Ď t0, 1uω with λpX q “ 1, if X KK r | t then r P X ;

§ for any X Ď t0, 1uω, if X KK r | t and r P X then λpX q ą 0.



Coincidence of relative randomness notions

Theorem Ranpr | tq iff both Ranprq and r KK t.

Proof

ð Suppose Ranprq and r KK t. Let X Ď t0, 1uω be such that
λpX q “ 1 and X KK r | t. We need to show that r P X .

We have X , t KK r by CI3, hence X KK r . Since Ranprq and
λpX q “ 1, indeed r P X .

ñ Suppose Ranpr | tq. We need to show Ranprq and r KK t.

Since Ran :“ ts P t0, 1uω | Ranpsqu is definable, we have
RanKK r | t. As λpRanq “ 1 and Ranpr | tq, it follows that r P Ran;
i.e., Ranprq .

Similarly, since Indt :“ ts P t0, 1uω | s KK tu is definable from t, we
have Indt KK r | t. As λpIndtq “ 1 and Ranpr | tq, it follows that
r P Indt ; i.e., r KK t .



Axioms for relative randomness

A sequence r P t0, 1uω is Borel random relative to t if for every
Borel B Ď t0, 1uω with λpBq “ 1, if B KK r | t then r P B;

Testability axiom (full relative version) Relative Borel randomness
implies relative randomness.

Proposition (Enough relative randomness)

For any z , t and any X Ď t0, 1uω with λpX q ą 0, there exists
r P X with Ranpr | tq and r KK z | t.

Proof

By enough randomness, there exists r P X with Ranprq and
r KK z , t. Since both Ranprq and r KK t, we have Ranpr | tq by
coincidence of relative randomness notions. Moreover r KK z | t by
(CI4).



Theorem. For Borel measurable f : t0, 1uω Ñ t0, 1uω, t.f.a.e.

1. f ´1 preserves Borel nullsets.

2. f ´1 preserves all nullsets.

3. Ranpr | f q implies Ranpf prq | f q.

(N.b., f can be represented by an element of t0, 1uω.)

Proof of 1 ñ 3. Suppose Ranpr | f q.

Suppose B is Borel, f prq P B and B KK f prq | f .
By (CI5), f ´1B KK f prq | f .
Since there exists s s.t. Ranps | f q and f psq “ f prq, it follows from
(CI5) that there exists s s.t. Ranps | f q and f psq “ f prq and
s KK f ´1B | f .
As s P f ´1B, we have λpf ´1Bq ą 0 because Ranpr | f q.
Since f ´1 preserves nullsets, λpBq ą 0.

The above shows f prq is Borel random relative to f . Whence, by
testability, Ranpr | f q.



Corollary. For Borel measurable f : t0, 1uω Ñ t0, 1uω, t.f.a.e.

1. f ´1 preserves measure of Borel sets.

2. f ´1 preserves measure of all subsets.

Proof of 1 ñ 2. For any X Ď t0, 1uω, by the near-Borel property,
there exists Borel B such that λpX∆Bq “ 0. By the theorem,
λppf ´1X q∆pf ´1Bqq “ λpf ´1pX∆Bqq “ 0. So:

λpf ´1X q “ λpf ´1Bq “ λpBq “ λpX q .

Corollary. The measure λ : Ppt0, 1uωq Ñ r0, 1s is translation
invariant; i.e., for all s P t0, 1uω and X Ď t0, 1uω, we have
λpX q “ λps ‘ X q (where ‘ is pointwise xor).



General probability measures

Let µ : Ppt0, 1uωq Ñ r0, 1s be any powerset probability measure.

We cannot in general use:

@X Ď t0, 1uω. µpX q “ 1 and r KKX implies r P X

as the definition of the µ-randomness of r P X and simultaneously
obtain enough µ-random elements in the sense that

@X Ď t0, 1uω. µpX q ą 0 implies D µ-random r P X s.t. r KKX

Example: suppose s P t0, 1uω is (λ-)random and define µ :“ δs ,
where δs is the Dirac measure.

Then although µptsuq “ 1 and s is µ-random according to the
above definition, we do not have s KKtsu.



The natural solution would be to use independence conditional on
µ. But we can only condition by elements of t0, 1uω .

We instead condition on the Borel restriction µB of µ,
which can indeed be represented as an element of t0, 1uω.

Define r P X to be µ-random (notation Ranµprq) if:

@X Ď t0, 1uω. µpX q “ 1 and r KKX |µB implies r P X

Say that there are enough µ-random elements if

@X Ď t0, 1uω. µpX q ą 0 implies D µ-random r P X s.t. r KKX |µB

The above definitions make good sense in situations in which µB
determines µ. This is the case if µ supports our three
characteristic properties of well-behaved randomness.



Randomness supporting measures

Let µ : Ppt0, 1uωq Ñ r0, 1s be a powerset probability measure.

µ is randomness supporting if the following three conditions hold.

§ Near Borel

µ is near Borel.

§ Testable

Borel µ-randomness implies µ-randomness

§ Enough randomness

There are enough µ-random elements.

Theorem Every Borel measure on t0, 1uω extends to a unique
randomness supporting powerset measure.



Further directions

A comprehensive theory of randomness-supporting measures

Preservation under pushforward; product measures and Fubini;
interactions between randomness and stochastic processes.

Parallels with algorithmic randomness

Characterisations of randomness in terms of incompressibility and
in terms of Martingales.

Foundational questions

Consistency?! Consistency with universal Lebesgue measurablility?
Additional axioms, e.g., the axiom of statistical analysability:

For every s P t0, 1uω there exists a determined probability
measure µ on t0, 1uω such that Ranµpsq .

Foundations for a synthetic probability theory



Summing up so far

We have extended set theory with conditional independence and
used this to axiomatise randomness.

Philosophically, this builds predictive content into probability
theory. (‘Almost sure’ is replaced with conditions under which
genuine certainty applies.)

Technically, the approach leads to a theory of randomly supported
probability measures, which is still at an early stage of
development.

We now briefly discuss a potential model for our theory, and
connections with previous work.



The random topos

The random topos is the topos of sheaves for the countable-cover
(modulo a null set) Grothendieck topology on the monoid of
null-set reflecting Borel-measurable endofunctions on t0, 1uω with
uniform Borel measure.

This is a boolean topos. It validates dependent choice.

I believe I can model the entire theory in this topos, but this is
work in progress.

(I do not currently have a completed consistency proof.)



Dependence/independence logic

Dependence logic [Väänänen 2007] and independence logic [Grädel
& Väänänen 2013] extend first-order logic with primitives
expressing dependence and (conditional) independence.

The semantics is based on Hodges’ team semantics for
independence-friendly logic. However, the team semantics of
dependence/independence logic does not validate classical logic!

In the random topos (and other related models), I use a sheaf
semantics that is related to team semantics, but which does
validate classical logic.



Algorithmic randomness

Question Can independence-based definitions of randomness be
given in the context of algorithmic randomness?

An illustration of the sort of definition we have in mind

Define s KK t for s, t P t0, 1uω to mean s and t have meet o in the
partial order of Turing degrees.

Use an encoding of statistical non-randomness tests by sequences
s, so that s ÞÑ T s maps computable s to Martin-Löf tests.

Define r to be random if there is no s with s KK r such that r
satisfies T s .

Does this or something similar give an interesting notion of
randomness?



Randomness via independence à la van Lambalgen

van Lambalgen [JSL 1990 & 1992] also axiomatized properties of
randomness based on a primitive relation of ‘independence’, and
used his axioms to derive measure-theoretic consequences.

The approach of this talk has been heavily influenced by vL’s work,
and provides an alternative realisation of his programme.

The major technical difference is that van Lambalgen axiomatized
a basic ‘independence’ relation Rpx , ~yq, which expresses the
relation Ranpx | ~yq in this talk. In his work, ‘independence’ is thus
identified (one might say conflated) with relative randomness.

We use a neutral notion of independence and use this to define
randomness. This is conceptually natural, and allows the smooth
development of randomness for general probability measures.



Conclusions

We follow van Lambalgen in axiomatising randomness using a
primitive notion of independence.

Where van Lambalgan identifies ‘independence’ with relative
randomness, we instead axiomatise a neutral notion of
independence, and use this to define randomness.

We believe our approach to be conceptually more perspicuous.

A technical advantage is that our approach accommodates
randomness for general probability measures in a simple way.

There is potential for developing probability theory in our
framework with the advantage that all sets are measurable.

The development and its consistency are work in progress!


