Equivalence and Conditional Independence in Atomic Sheaf Logic

Alex Simpson

FMF, University of Ljubljana, IMFM, Ljubljana Slovenia

> LICS Tallinn 9th July 2024

> > ▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Aim of talk

Logical reasoning principles for probabilistic relations:

X = Y	X and Y are almost surely equal
$X \sim Y$	X and Y are identically distributed
$X \perp Y$	X and Y are independent
$X \perp Y \mid Z$	X and Y are conditionally independent given Z

Example expressible property:

 $X \perp Y \land X \sim Y$

says that X and Y are independent and identically distributed (iid).

Also interested in **non-probabilistic** interpretations of the same primitives.

Nondeterministic variables

A nondeterministic variable valued in a set A is function

 $X:\Omega \to A$

where Ω is a finite nonempty sample set.

Nondeterministic variables X, Y are equiextensive $(X \bowtie Y)$ if they have the same images:,

 $X(\Omega) = Y(\Omega)$.

(Conditional) independence of nondeterministic variables

Nondeterministic variables X, Y are independent $(X \perp \!\!\!\perp Y)$ if

$$\forall a, b \in A. \ \Diamond(X = a) \land \Diamond(Y = b) \rightarrow \ \Diamond(X = a \land Y = b)$$

X, Y are conditionally independent given Z $(X \perp \!\!\!\perp Y \mid Z)$ if $\forall a, b, c \in A. \ \Diamond (X = a \land Z = c) \land \ \Diamond (Y = b \land Z = c)$ $\rightarrow \Diamond (X = a \land Y = b \land Z = c)$

Logical formulas

$$\Phi ::= x = y | x \sim y | x \perp y | x \perp y | z |$$

$$\Phi \land \Phi | \neg \Phi | \exists x \Phi$$

The atomic formulas (first row) are: equality, equivalence, independence and conditional independence.

(The paper has multisorted variables and atomic formulas involving vectors of variables.)

The semantics of a formula $\Phi(x_1, \ldots, x_k)$ is defined via a forcing relation of the form

where $\underline{\rho} \colon \{x_1, \ldots, x_k\} \to (\Omega \to A).$

Variables are interpreted as nondeterministic variables.

・ロト・西ト・山田・山田・山口・

Semantics of atomic formulas

$$\Omega \Vdash_{\underline{\rho}} x = y \iff \underline{\rho}(x) = \underline{\rho}(y)$$
$$\Omega \Vdash_{\underline{\rho}} x \sim y \iff \underline{\rho}(x) \bowtie \underline{\rho}(y)$$
$$\Omega \Vdash_{\underline{\rho}} x \perp y \iff \underline{\rho}(x) \perp \underline{\rho}(y)$$
$$\Omega \Vdash_{\underline{\rho}} x \perp y \mid z \iff \underline{\rho}(x) \perp \underline{\rho}(y) \mid \underline{\rho}(z)$$

◆□ ▶ < 個 ▶ < 目 ▶ < 目 ▶ < 目 ● ○ ○ ○</p>

Semantics of logical formulas

$$\Omega \Vdash_{\underline{\rho}} \Phi \land \Psi \Leftrightarrow \Omega \Vdash_{\underline{\rho}} \Phi \text{ and } \Omega \Vdash_{\underline{\rho}} \Psi$$
$$\Omega \Vdash_{\underline{\rho}} \neg \Phi \Leftrightarrow \Omega \nvDash_{\underline{\rho}} \Phi$$
$$\Omega \Vdash_{\underline{\rho}} \exists x. \Phi \Leftrightarrow \exists q: \Omega' \twoheadrightarrow \Omega. \exists X: \Omega' \to A. \Omega' \Vdash_{\underline{\rho'}[x:=X]} \Phi$$
where $\underline{\rho'}: z \mapsto \underline{\rho}(z) \circ q$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の文(で)

Relationship to independence logic

Variable assignments $\{x_1, \ldots, x_k\} \rightarrow (\Omega \rightarrow A)$ correspond to the multiteams (Durand et. al. 2017) of (in)dependence logic (Väänänen 2007, Grädel & Väänänen 2013).

The semantic clauses for atomic formulas, conjunction and the existential quantifier coincide with corresponding clauses in independence logic (under the lax semantics of \exists).

In independence logic, negation is usually restricted to atomic formulas and its semantics is defined differently. There are also semantic clauses for $\lor, \rightarrow, \forall$.

Independence logic is an exotic logic (e.g., disjunction is not idempotent) with characteristics that make it challenging to use as a framework for reasoning about independence (e.g., $\forall x \forall y. x \perp y$ is validated).

With our forcing relation, the logic is not exotic.

Theorem Every theorem of classical first-order logic is forced.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Accordingly, semantic clauses for $\lor, \rightarrow, \forall$ can be derived.

We obtain a classical logic for reasoning about equality, equivalence and conditional independence.

Axioms for conditional independence

The expected axioms are validated, giving a practical (cf. Dawid, Pearl, ...) axiomatisation of conditional independence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Transfer principle

$$\exists x \quad x \sim x' \rightarrow \exists y' \ x, y \sim x', y'$$

Independence principle

$$\exists x \ x \sim y \land x \perp z$$

Invariance principle

$$x \sim y \land \Phi(x) \rightarrow \Phi(y)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $(\Phi(x)$ has at most one free variable)

Category-theoretic perspective

Sur = category of finite nonempty sets and surjective functions.Every set A, defines a presheaf $A^{(-)}$: $Sur^{op} \rightarrow Set$. We have subpresheaves

$$(-) \sim (-) \subseteq A^{(-)} \times A^{(-)}$$
$$(-) \bot (-) \subseteq A^{(-)} \times B^{(-)}$$
$$(-) \bot (-) |(-) \subseteq A^{(-)} \times B^{(-)} \times C^{(-)}$$

Sur is a coconfluent category, thus Sur carries the atomic Grothendieck topology.

For every set A, the presheaf $A^{(-)}$ is an atomic sheaf.

The subpresheaves above are in fact subsheaves.

Our forcing relation is sheaf semantics in $Sh_{at}(Sur)$.

The general story

Let ${\mathbb C}$ be any small coconfluent category.

Every sheaf <u>A</u> in $Sh_{at}(\mathbb{C})$ carries a canonical atomic equivalence relation $\sim \subseteq \underline{A} \times \underline{A}$, for which atomic sheaf semantics validates the transfer and invariance principles.

If \mathbb{C} is a category of epimorphisms with pairings and with **independent pullback** structure then, for all sheaves <u>A</u>, <u>B</u>, <u>C</u> with supports, there is a canonical atomic conditional equivalence relation $\coprod_{\underline{A},\underline{B}|\underline{C}} \subseteq \underline{A} \times \underline{B} \times \underline{C}$.

Atomic sheaf semantics validates the axioms for conditional independence including the independence principle.

Another model is the topos of probability sheaves in which \sim is equality-in-distribution and $\bot\!\!\!\bot$ is the usual probabilistic conditional independence relation.

Also the Schanuel topos (equivalent to nominal sets) is a model.