Equivalence and Conditional Independence in Atomic Sheaf Logic

Alex Simpson

FMF, University of Ljubljana, IMFM, Ljubljana Slovenia

> LICS Tallinn 9th July 2024

> > K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Aim of talk

Logical reasoning principles for probabilistic relations:

Example expressible property:

 X | Y ∧ $X \sim Y$

says that X and Y are independent and identically distributed (iid).

Also interested in non-probabilistic interpretations of the same primitives.

Nondeterministic variables

A nondeterministic variable valued in a set A is function

 $X \cdot \Omega \rightarrow A$

where Ω is a finite nonempty sample set.

Nondeterministic variables X, Y are equiextensive $(X \bowtie Y)$ if they have the same images:,

 $X(\Omega) = Y(\Omega)$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

(Conditional) independence of nondeterministic variables

Nondeterministic variables X, Y are independent $(X \perp Y)$ if

$$
\forall a, b \in A. \ \Diamond(X = a) \land \Diamond(Y = b) \rightarrow \Diamond(X = a \land Y = b)
$$

X, Y are conditionally independent given $Z(X \perp Y | Z)$ if

$$
\forall a, b, c \in A. \ \Diamond(X = a \land Z = c) \ \land \ \Diamond(Y = b \land Z = c)
$$

$$
\rightarrow \Diamond(X = a \land Y = b \land Z = c)
$$

KELK KØLK VELKEN EL 1990

Logical formulas

$$
\Phi ::= x = y | x \sim y | x \perp y | x \perp y | z |
$$

$$
\Phi \wedge \Phi | \neg \Phi | \exists x \Phi
$$

The atomic formulas (first row) are: equality, equivalence, independence and conditional independence.

(The paper has multisorted variables and atomic formulas involving vectors of variables.)

The semantics of a formula $\Phi(x_1, \ldots, x_k)$ is defined via a forcing relation of the form

$$
\Omega\Vdash_{\underline{\rho}}\Phi
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

where $\rho: \{x_1, \ldots, x_k\} \to (\Omega \to A)$.

Variables are interpreted as nondeterministic variables.

Semantics of atomic formulas

$$
\Omega \Vdash_{\rho} x = y \Leftrightarrow \rho(x) = \rho(y)
$$

$$
\Omega \Vdash_{\rho} x \sim y \Leftrightarrow \rho(x) \bowtie \rho(y)
$$

$$
\Omega \Vdash_{\rho} x \perp y \Leftrightarrow \rho(x) \perp \rho(y)
$$

$$
\Omega \Vdash_{\rho} x \perp y \Leftrightarrow \rho(x) \perp \rho(y) \mid \rho(z)
$$

KOKK@KKEKKEK E 1990

Semantics of logical formulas

$$
\Omega \Vdash_{\underline{\rho}} \Phi \wedge \Psi \iff \Omega \Vdash_{\underline{\rho}} \Phi \text{ and } \Omega \Vdash_{\underline{\rho}} \Psi
$$
\n
$$
\Omega \Vdash_{\underline{\rho}} \neg \Phi \iff \Omega \Vdash_{\underline{\rho}} \Phi
$$
\n
$$
\Omega \Vdash_{\underline{\rho}} \exists x. \Phi \iff \exists q: \Omega' \twoheadrightarrow \Omega. \exists X: \Omega' \to A. \Omega' \Vdash_{\underline{\rho'}[x:=X]} \Phi
$$
\n
$$
\text{where } \underline{\rho'}: z \mapsto \underline{\rho}(z) \circ q
$$

KOKK@KKEKKEK E 1990

Relationship to independence logic

Variable assignments $\{x_1, \ldots, x_k\} \rightarrow (\Omega \rightarrow A)$ correspond to the multiteams (Durand et. al. 2017) of (in)dependence logic (Väänänen 2007, Grädel & Väänänen 2013).

The semantic clauses for atomic formulas, conjunction and the existential quantifier coincide with corresponding clauses in independence logic (under the lax semantics of ∃).

In independence logic, negation is usually restricted to atomic formulas and its semantics is defined differently. There are also semantic clauses for $\vee, \rightarrow, \forall.$

Independence logic is an exotic logic (e.g., disjunction is not idempotent) with characteristics that make it challenging to use as a framework for reasoning about independence (e.g., $\forall x \forall y$. $x \perp y$ is validated).

With our forcing relation, the logic is not exotic.

Theorem Every theorem of classical first-order logic is forced.

Accordingly, semantic clauses for \vee , \rightarrow , \forall can be derived.

We obtain a classical logic for reasoning about equality, equivalence and conditional independence.

Axioms for conditional independence

The expected axioms are validated, giving a practical (cf. Dawid, Pearl, ...) axiomatisation of conditional independence.

KORKARYKERKER POLO

Transfer principle

$$
\exists x \quad x \sim x' \ \rightarrow \ \exists y' \ x, y \sim x', y'
$$

Independence principle

$$
\exists x \quad x \sim y \ \land \ x \perp z
$$

Invariance principle

$$
x \sim y \ \land \ \Phi(x) \ \rightarrow \ \Phi(y)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 $(\Phi(x)$ has at most one free variable)

Category-theoretic perspective

 $Sur = category of finite nonempty sets and surjective functions.$ Every set A, defines a presheaf $A^{(-)}$: Sur^{op} \rightarrow Set. We have subpresheaves

$$
(-) \sim (-) \subseteq A^{(-)} \times A^{(-)}
$$

$$
(-) \perp \!\!\! \perp (-) \subseteq A^{(-)} \times B^{(-)}
$$

$$
(-) \perp \!\!\! \perp (-) | (-) \subseteq A^{(-)} \times B^{(-)} \times C^{(-)}
$$

Sur is a coconfluent category, thus Sur carries the atomic Grothendieck topology.

For every set A, the presheaf $A^{(-)}$ is an atomic sheaf.

The subpresheaves above are in fact subsheaves.

Our forcing relation is sheaf semantics in $\text{Sh}_{at}(\text{Sur})$.

The general story

Let $\mathbb C$ be any small coconfluent category.

Every sheaf A in $\text{Sh}_{at}(\mathbb{C})$ carries a canonical atomic equivalence relation \sim ⊂ A \times A, for which atomic sheaf semantics validates the transfer and invariance principles.

If $\mathbb C$ is a category of epimorphisms with pairings and with **independent pullback** structure then, for all sheaves A, B, C with supports, there is a canonical atomic conditional equivalence relation $\perp\!\!\!\perp_{A,B|C} \subseteq \underline{A} \times \underline{B} \times \underline{C}$.

Atomic sheaf semantics validates the axioms for conditional independence including the independence principle.

Another model is the topos of probability sheaves in which \sim is equality-in-distribution and $\perp\!\!\!\perp$ is the usual probabilistic conditional independence relation.

Also the Schanuel topos (equivalent to nominal sets) is a model.