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Aim of talk

Logical reasoning principles for probabilistic relations:

X = Y X and Y are almost surely equal
X ∼ Y X and Y are identically distributed
X ⊥Y X and Y are independent

X ⊥Y |Z X and Y are conditionally independent given Z

Example expressible property:

X ⊥Y ∧ X ∼ Y

says that X and Y are independent and identically distributed (iid).

Also interested in non-probabilistic interpretations of the same
primitives.



Nondeterministic variables

A nondeterministic variable valued in a set A is function

X : Ω → A

where Ω is a finite nonempty sample set.

Nondeterministic variables X ,Y are equiextensive (X ▷◁ Y ) if they
have the same images:,

X (Ω) = Y (Ω) .



(Conditional) independence of nondeterministic variables

Nondeterministic variables X ,Y are independent (X ⊥⊥Y ) if

∀a, b ∈ A. ♢(X =a) ∧ ♢(Y =b) → ♢(X =a ∧ Y =b)

X ,Y are conditionally independent given Z (X ⊥⊥Y | Z ) if

∀a, b, c ∈ A. ♢(X =a ∧ Z=c) ∧ ♢(Y =b ∧ Z=c)

→ ♢(X =a ∧ Y =b ∧ Z=c)



Logical formulas

Φ ::= x = y | x ∼ y | x⊥y | x⊥y | z |
Φ ∧ Φ | ¬Φ | ∃x Φ

The atomic formulas (first row) are: equality, equivalence,
independence and conditional independence.

(The paper has multisorted variables and atomic formulas involving
vectors of variables.)

The semantics of a formula Φ(x1, . . . , xk) is defined via a forcing
relation of the form

Ω ⊩ρ Φ

where ρ : {x1, . . . , xk} → (Ω → A).

Variables are interpreted as nondeterministic variables.



Semantics of atomic formulas

Ω ⊩ρ x=y ⇔ ρ(x) = ρ(y)

Ω ⊩ρ x∼y ⇔ ρ(x) ▷◁ ρ(y)

Ω ⊩ρ x⊥y ⇔ ρ(x)⊥⊥ ρ(y)

Ω ⊩ρ x⊥y | z ⇔ ρ(x)⊥⊥ ρ(y) | ρ(z)



Semantics of logical formulas

Ω ⊩ρ Φ ∧Ψ ⇔ Ω ⊩ρ Φ and Ω ⊩ρ Ψ

Ω ⊩ρ ¬Φ ⇔ Ω ̸⊩ρ Φ

Ω ⊩ρ ∃x .Φ ⇔ ∃q : Ω′ ↠ Ω.∃X : Ω′ → A. Ω′ ⊩ρ′[x :=X ] Φ

where ρ′ : z 7→ ρ(z) ◦ q



Relationship to independence logic

Variable assignments {x1, . . . , xk} → (Ω → A) correspond to the
multiteams (Durand et. al. 2017) of (in)dependence logic
(Väänänen 2007, Grädel & Väänänen 2013).

The semantic clauses for atomic formulas, conjunction and the
existential quantifier coincide with corresponding clauses in
independence logic (under the lax semantics of ∃).

In independence logic, negation is usually restricted to atomic
formulas and its semantics is defined differently. There are also
semantic clauses for ∨,→, ∀.

Independence logic is an exotic logic (e.g., disjunction is not
idempotent) with characteristics that make it challenging to use as
a framework for reasoning about independence (e.g., ∀x∀y . x⊥y
is validated).



With our forcing relation, the logic is not exotic.

Theorem Every theorem of classical first-order logic is forced.

Accordingly, semantic clauses for ∨,→,∀ can be derived.

We obtain a classical logic for reasoning about equality,
equivalence and conditional independence.



Axioms for conditional independence

The expected axioms are validated, giving a practical (cf. Dawid,
Pearl, . . . ) axiomatisation of conditional independence.

▶ x⊥w |w

▶ x⊥y |w → y⊥x |w

▶ x⊥y , z |w → x⊥y |w

▶ x⊥y , z |w → x⊥y | z ,w

▶ x⊥y | z ,w ∧ x⊥z |w → x⊥y , z |w



Transfer principle

∃x x ∼ x ′ → ∃y ′ x , y ∼ x ′, y ′

Independence principle

∃x x ∼ y ∧ x⊥z

Invariance principle

x ∼ y ∧ Φ(x) → Φ(y)

(Φ(x) has at most one free variable)



Category-theoretic perspective

Sur = category of finite nonempty sets and surjective functions.

Every set A, defines a presheaf A(−) : Surop → Set.

We have subpresheaves

(−) ∼ (−) ⊆ A(−)× A(−)

(−)⊥⊥(−) ⊆ A(−)×B(−)

(−)⊥⊥(−) |(−) ⊆ A(−)×B(−)×C (−)

Sur is a coconfluent category, thus Sur carries the atomic
Grothendieck topology.

For every set A, the presheaf A(−) is an atomic sheaf.

The subpresheaves above are in fact subsheaves.

Our forcing relation is sheaf semantics in Shat(Sur).



The general story

Let C be any small coconfluent category.

Every sheaf A in Shat(C) carries a canonical atomic equivalence
relation ∼ ⊆ A× A, for which atomic sheaf semantics validates the
transfer and invariance principles.

If C is a category of epimorphisms with pairings and with
independent pullback structure then, for all sheaves A,B,C with
supports, there is a canonical atomic conditional equivalence
relation ⊥⊥A,B|C ⊆ A× B × C .

Atomic sheaf semantics validates the axioms for conditional
independence including the independence principle.

Another model is the topos of probability sheaves in which ∼ is
equality-in-distribution and ⊥⊥ is the usual probabilistic conditional
independence relation.

Also the Schanuel topos (equivalent to nominal sets) is a model.


