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Synthetic probability theory?

In the spirit of synthetic differential geometry (Lawvere, Kock, . . . )

Axiomatise contingent facts about probability as it is experienced,
rather than deriving probabilistic results as necessary consequences
of set-theoretic definitions that have a tenuous relationship to the
concepts they are formalising.

A main goal is to provide a single set of axioms that suffices for
developing the core constructions and results of probability theory.

I believe the approach has the potential to provide a simplification
of textbook probability theory.



Gian-Carlo Rota (1932-1999):

“ The beginning definitions in any field of mathematics
are always misleading, and the basic definitions of
probability are perhaps the most misleading of all. ”

Twelve Problems in Probability Theory No One Likes to Bring Up,
The Fubini Lectures, 1998 (published 2001)



The definition of “random variable”

An A-valued random variable is:

X : Ω→ A

where:

I the value space A is a measurable space (set with σ-algebra of
measurable subsets);

I the sample space Ω is a probability space (measurable space
with probability measure PΩ); and

I X is a measurable function.



David Mumford:

“ The basic object of study in probability is the random
variable and I will argue that it should be treated as a
basic construct . . . and it is artificial and unnatural

to define it in terms of measure theory. ”

The Dawning of the Age of Stochasticity, 2000



Approach of talk

Present an axiomatisation of random variables in terms of their
interface (what one can do with them) rather than by means of a
concrete set-theoretic implementation.

General setting:

I We work axiomatically with the category Set of sets in one of:
set theory (allowing atoms) / type theory / topos theory.

I The underlying logic is classical.

I We assume the axiom of dependent choice (DC) but not the
full axiom of choice.

We formulate the axioms in the most convenient form for fuss-free
probability theory (e.g., avoiding fussing over measurability).



Functions act on random variables

Axiom:

I For every set A there is a set RV(A) of A-valued random
variables.

I For every function f : A→ B and random variable X ∈ RV(A)
there is an associated

f (X ) ∈ RV(B) .

Moreover,

id(X ) = X (g ◦ f )(X ) = g(f (X )) .

Equivalently: We have a functor RV : Set→ Set.



Random variables have probability laws

Axiom:

I Every X ∈ RV(A) has an associated law PX ∈M1(A), where:

M1(A) = {µ : P(A)→ [0, 1] | µ is a probability measure} .

Here P(A) is the full powerset.

I For every f : A→ B and random variable X ∈ RV(A) we have
Pf (X ) = f∗(PX ), where f∗(µ) ∈M1(B) is the pushforward
probability measure f∗(µ)(B ′) := µ(f −1B ′) .

Equivalently: We have a natural transformation P : RV⇒M1



Probability for individual random variables

The equality in law relation for X ,Y ∈ RV(A)

X ∼ Y ⇔ PX = PY

X ∈ RV(R) is said to be integrable if it has finite expectation:

E(X ) :=

∫
x
x dPX

Similarly, define variance, moments, etc.



Families of random variables

Giving a finite or countably infinite family of random variables is
equivalent to giving a random family.

Axiom: For every (Xi ∈ RV(Ai ))i∈I with I countable, there exists
a unique Z ∈ RV(

∏
i∈I Ai ) such that Xk = πk(Z ) for every k ∈ I ,

where πk : (
∏

i∈I Ai )→ Ak is the projection.

Equivalently: RV preserves countable (including finite) products.

Notation: For notational convenience we work as if the canonical

isomorphism RV(
∏

i∈I Ai ) ∼=
∏

i∈I RV(Ai ) is equality.

(E.g., we write (Xi )i for Z above.)



Independence

Independence between X ∈ RV(A) and Y ∈ RV(B):

X ⊥⊥Y ⇔ ∀A′⊆A,B ′⊆B

P(X ,Y )(A′ × B ′) = PX (A′) .PY (B ′)

Mutual independence

⊥⊥X1, . . . ,Xn ⇔ ⊥⊥X1, . . . ,Xn−1 and (X1, . . . ,Xn−1)⊥⊥Xn

Infinite mutual independence

⊥⊥(Xi )i≥1 ⇔ ∀n ≥ 1. ⊥⊥X1, . . . ,Xn



Restriction of random variables

Random variables restrict to probability-1 subsets.

Restriction axiom:

Given Y ∈ RV(B) and A ⊆ B with PY (A) = 1, there exists (a
necessarily unique) X ∈ RV(A) such that Y = i(X ), where
i : A→ B is the inclusion function.



An extensionality principle

Equality of random variables is almost sure equality.

Proposition (Extensionality)

For X ,Y ∈ RV(A):

X = Y ⇔ P(X ,Y ) {(x , y) | x = y} = 1 (official notation)

P(X = Y ) = 1 (informal notation)

Corollary Given X ,X ′ ∈ RV(A) and A ⊆ B, i(X ) = i(X ′) implies
X = X ′ .

The uniqueness of the random variable X whose existence is
postulated in the restriction axiom follows.



Proof of extensionality

Proof of interesting (right-to-left) implication

Suppose X ,Y ∈ RV(A) satisfy

P(X ,Y )(D) = 1 ,

where D := {(x , y) ∈ A× A | x = y} .

By restriction, there exists Z ∈ RV(D) such that i(Z ) = (X ,Y ),
where i : D → A× A is the inclusion function.

Then
(π1 ◦ i)(Z ) = π1(X ,Y ) = X
(π2 ◦ i)(Z ) = π2(X ,Y ) = Y

Since π1 ◦ i = π2 ◦ i : D → A , it follows that X = Y . �



Categrory-theoretic formulation of restriction

Restriction category-theoretically:

If m : A→ B is a monomorphism then the naturality square below
is a pullback.

RV(A)
X 7→ PX- M1(A)

RV(B)

RV(m)

? Y 7→ PY- M1(B)

M1(m)

?

Proposition: The functor RV : Set→ Set preserves equalisers.



Existence of random variables

Proposition (Deterministic RVs)
For every x ∈ A there exists a unique random variable δx ∈ RV(A)
satisfying, for every A′ ⊆ A:

Pδx (A′) =

{
1 if x ∈ A′

0 otherwise

We write δ for the function x 7→ δx : A→ RV(A) .

Axiom (Fair coin)
There exists K ∈ RV{0, 1} with PK{0} = 1

2 = PK{1}.



Existence of independent random variables

The independence axiom

For every X ∈ RV(A) and Y ∈ RV(B), there exists X ′ ∈ RV(A)
such that:

X ′ ∼ X and X ′⊥⊥Y .



Proposition For every random variable X ∈ RV(A) there exists an
infinite sequence (Xi )i≥0 of mutually independent random variables
with Xi ∼ X for every Xi .

Proof

Let X0 = X .

Given X0, . . . ,Xi−1, the independence axiom gives us Xi with
X ∼ Xi such that Xi ⊥⊥(X0, . . . ,Xi−1).

This defines the required sequence (Xi )i≥0 by DC. �

By the proposition there exists an infinite sequence (Ki )i≥0 of
independent random variables identically distributed to the fair
coin K .



Laws of large numbers

∀ε > 0 lim
n→∞

P

(∣∣∣∣∣
(∑n−1

i=0 Ki

n

)
− 1

2

∣∣∣∣∣ < ε

)
= 1 (weak)

P

(
lim
n→∞

(∑n−1
i=0 Ki

n

)
=

1

2

)
= 1 (strong)

Everything thus far, up to and including the formulation of the
weak law, only uses the preservation of finite products by RV. The
formulation of the strong law, however, makes essential use of the
preservation of countably infinite products to define:

λ := P(Ki )i ∈ M1({0, 1}N)



The near-Borel axiom

A standard Borel space is a set A together with a σ-algebra
B ⊆ P(A) that arises as the σ-algebra of Borel sets with respect to
some complete separable metric space structure on A.

Let (A,B) be a standard Borel space. We say that a probability
measure µ ∈M1(A) is near Borel if: for every A′ ⊆ A there exists
B ∈ B such that µ(A′∆B) = 0.

We say that µ ∈M1(A) is an RV-measure if there exists
X ∈ RV(A) with PX = µ.

Axiom Every RV-measure on a standard Borel space is near Borel.

(If one assumes all subsets of R are Lebesgue measurable then
every µ ∈M1(A) is near Borel. I prefer the axiom above, as I
believe its consistency does not require an inaccessible cardinal. )



Relating RV and Borel measures

Proposition (Raič & S.) Suppose µ, ν are RV-measures on a
standard Borel space (A,B). The following are equivalent.

I µ(B) = ν(B) for all B ∈ B.

I µ = ν.

Corollary The measure λ ∈MRV({0, 1}N) is translation invariant.

(We write MRV(A) for the set of RV-measures on A.)

Proposition Every Borel probability measure µB : B → [0, 1] on a
standard Borel space (A,B) extends to a unique µ ∈MRV(A).



Towards conditional expectation

In standard probability theory, conditional expectation takes the
form E(X | F), where

I F is a sub-σ-algebra of the underlying σ-algebra on the
sample space Ω.

I The characterising (up to almost sure equality) properties of
E(X | F) include F-measurability.

We have no sample space Ω!

I We condition with respect to other random variables E(X |Y ).
(In our setting, this is general enough.)

I The measurability condition is replaced by functional
dependency.



Conditional expectation

We say that Z ∈ RV(B) is functionally dependent on Y ∈ RV(A)
(notation Z←Y ) if there exists f : A→ B such that Z = f (Y ).

Proposition
For Y ∈ RV(A) and integrable X ∈ RV(R), there exists a unique
integrable random variable Z ∈ RV(R) satisfying:

I Z←Y , and

I for all A′ ⊆ A

E(Z . 1A′(Y )) = E(X . 1A′(Y ))

The unique such Z defines the conditional expectation E(X |Y ).



Conditional probability

For X ∈ RV(A), Y ∈ RV(B) and A′ ⊆ A define:

P(X ∈ A′ |Y ) := E(1A′(X ) |Y ) .

Conditional independence

For X ∈ RV(A), Y ∈ RV(B) and Z ∈ RV(C ) define:

X ⊥⊥Y |Z ⇔ for all A′ ⊆ A, B ′ ⊆ B

P((X ,Y ) ∈ A′ × B ′ |Z ) = P(X ∈ A′ |Z ) .P (Y ∈ B ′ |Z ) .



Universality of λ RVs

Every random variable is functionally dependent on some
{0, 1}N-valued random variable with law λ .

Axiom: For every Y ∈ RV(A) there exist a random variable
X ∈ RV({0, 1}N) with PX = λ such that Y←X .

God tosses coins!



Regular conditional probabilities

For X ∈ RV(A) and Y ∈ RV(B) a regular conditional probability
(rcp) for Y conditioned on X is a random variable
Z ∈ RV(MRV(B)) such that:

I Z←X
(so Z is induced from X by an RV-kernel A→MRV(B))

I For every B ′ ⊆ B,

Z (B ′) = P(Y ∈ B ′ |X ) ,

where Z (B ′) ∈ RV[0, 1] abbreviates (µ 7→ µ(B ′))(Z ).

Theorem For every pair of random variables X ,Y , there exists a
unique rcp for Y conditioned on X . We write PY |X for this rcp.



From kernels to RVs

The previous theorem takes us from pairs of random variables to
RV-kernels. Conversely we have:

Theorem

Suppose k : A→MRV(B) is an RV-kernel where |B| ≤ 2ℵ0 . Then,
for any X ∈ RV(A), there exists Y ∈ RV(B) such that:

PY |X = k(X ) .

Simple illustrative application:

Using the RV-kernel (µ, σ) 7→ Nµ,σ2 : R2 →MRV(R) , we obtain
for any M,S ∈ RV(R) a random variable Z such that

PZ |M,S = NM,S2 ( in statistician’s notation Z ∼ NM,S2 )



Existence of conditionally independent RVs

Proposition

For every X ∈ RV(A), Y ∈ RV(B) and Z ∈ RV(C ), there exists
X ′ ∈ RV(A) such that:

(X ′,Z ) ∼ (X ,Z ) and X ′⊥⊥Y |Z .



Towards stochastic processes: a myth

David Williams:

“ At the level of this book, the theory would be more
elegant if we regarded a random variable as an
equivalence class of measurable functions, two functions
belonging to the same equivalence class if and only if
they are equal almost everywhere. . . . [In the] more
interesting, and more important, theory where the
parameter set of our process is uncountable . . . the
equivalence class formulation just will not work . . . it
loses the subtlety which is essential even for formulating
the fundamental results on the existence of continuous
modifications, etc. ”

Probability with Martingales, 1990



Stochastic processes

Traditional probability theory

For T ⊆ R, a T -indexed stochastic process is given by

Ω× T - R

(measurable in the first argument)

Synthetic probability theory

We have no Ω, and we have RV(A) as a replacement for AΩ.

There are thus two natural options for T -indexed stochastic
processes:

RV(R)T RV(RT )

The second is the useful choice!



For T ⊆ R, a T -indexed stochastic process is a random variable

XT ∈ RV(RT ) .

If S ⊆ T then we use

(f 7→ λs. f (s)) : RT → RS

to define

XS := (f 7→ λs. f (s)) (XT ) ∈ RV(RS) .

For t ∈ T we define

Xt := (f 7→ f (t)) (XT ) ∈ RV(R) .



Consider the map.

RV
(
RT
) XT 7→ (Xt)t∈T- (RV(R))T

Given XT ,YT we have, by extensionality,

XT = YT ⇔ P(XT = YT ) = 1

This says that XT and YT are indistinguishable. Similarly,

(Xt)t∈T = (Yt)t∈T ⇔ ∀t P(Xt = Yt) = 1

This says that XT and YT are modifications of each other.

When T is a continuum, there exist distinguishable processes that
are modifications of each other.

RV : Set→ Set does not preserve arbitrary products!



Example definitions (martingale, Markov process)

XT ∈ RV(RT ) is a martingale if for every s < t ∈ T

E(Xt | X≤s) = Xs ,

where ≤s := {s ′ ∈ T | s ′ ≤ s}

XT ∈ RV(RT ) has the Markov property if for every s ∈ T

PX>s |X≤s
← Xs ,

where >s := {s ′ ∈ T | s ′ > s} .



Brownian motion — completely standard!

BT ∈ RV(RT ), where T = [0,∞), is a Brownian motion if:

I B0 = 0;

I BT has independent increments; i.e., for all 0 ≤ t0 < · · · < tn

⊥⊥
1≤i≤n

Bti − Bti−1 ;

I BT has stationary normal increments; i.e., for all s, t ≥ 0

(Bs+t − Bs) ∼ N0,t ;

I P(BT is continuous) = 1 .



Construction of Brownian motion

Theorem A Brownian motion B[0,∞) exists.

Proof outline

Use the existence of conditionally independent RVs and DC to
iteratively construct a process B ′ ∈ RV(R[0,∞)∩Qd ) satisfying the
conditions of Brownian motion, but indexed by dyadic rationals.

Prove that this dyadic-rational-indexed process is almost surely
continuous at all real t ∈ [0,∞). Thus B ′ restricts to a random
variable on the set

{f ∈ R[0,∞)∩Qd | f is continuous at all t ∈ [0,∞)} .

Now apply the function that maps each such f to its unique
continuous extension in R[0,∞). �



Equality and equivalence

There are two equivalence relations of interest on random
variables.

I Almost sure equality — in our setting this is just equality.

This satisfies the usual (internal) substitutivity laws.

I The weaker equivalence relation: equality in law ∼.

This satisfies a meta-theoretic substitutivity law.



The invariance axiom

All definable properties are equidistribution invariant.

Axiom (schema)

Every sentence of the form

∀X ,Y ∈ RV(A), Φ(X ) ∧ X ∼Y → Φ(Y )

is true.

There is no evil!



Ongoing and future work

Prove consistency of the axioms. (I have a candidate sheaf model.)

Develop substantial portions of probability theory in detail.

Transfer theorems.

Constructive and (hence) computable versions.

Type-theoretic formalised probability theory.

“Bayesian variables” instead of random variables?

A convenient category for higher-order probability theory: Set !



Where are the monads?

RV is not a monad (I believe)

M1 is a monad, but I don’t know if it is commutative.

Integration w.r.t. RV-measures satisfies the Fubini property. But I
don’t know if MRV forms a monad.

Challenge: Find a model combining:

I cartesian closed with countable limits and colimits;

I Fubini’s theorem for integration w.r.t. probability measures;

I infinite product measures
⊗

: (
∏

n≥0 MXn)→ M(
∏

n≥0 Xn),
where MX is the object of “probability measures”;

I M is a monad.


