
Teorija izračunljivosti 2022–23

Alex Simpson

Alex.Simpson@fmf.uni-lj.si

Version of March 9, 2023

Contents

1 Algorithms and Turing Machines 1

2 Undecidability and the Universal Turing Machine 8

3 Representations 12

4 Computable Partial Functions 19

5 Enumerating the Computable Partial Functions 23

6 The Church-Turing Thesis 28

7 Computable and Computably Enumerable Sets 31

8 Rice’s Theorem and the Rice-Shapiro Theorem 35

9 Varieties of Non-computable Set 38

10 Computing with Infinite Words 43

11 Topological Aspects of Computing with Infinite Words 48

12 Computing with Real Numbers 53

13 Algorithmic Information Theory 59

14 Algorithmic Randomness 64

i

Mathematical preliminaries

Partial functions A partial function f from a set X to a set Y (notation f : X ⇀ Y) is
given by a subset dom(f) ⊆ X (the domain of f) together with a function f : dom(f)→ Y .

When we write f(x) = y this implies that x ∈ dom(f). If x /∈ dom(f), we say that f is
undefined on x. If e and e′ are mathematical expressions that are potentially undefined (such
as f(x), where f is a partial function) then we write e ' e′ (Kleene equality) to mean that
each of e and e′ is defined if and only if the other is and if they are defined then they are
equal. We further write f(x)↓ to say that f(x) is defined, and f(x)↑ or f(x) ' ↑ to say that
f(x) is undefined.

Sets of words For any set Σ, we write Σ∗ for the set of all words (i.e., finite sequences) of
elements from Σ. We write |x| for the length of a word x. We typically expand an individual
word x as x = x0 . . . x|x|−1, and we write ε for the unique word of length 0 (the empty word).
For a ∈ Σ, we write an for the constant word aa . . . a ∈ Σ∗ of length n.

Infinite words We write Σω for the set of all infinite words (i.e., infinite sequences) of
elements from Σ. We typically expand an individual word p ∈ Σω as p = p0p1p2 We
write p �n for the length n prefix of p; i.e., p �n := p0 . . . pn−1. For a ∈ Σ, we write aω for the
infinite constant word aaaa · · · ∈ Σω .

Updating a function Given a function f : X → Y and any a ∈ X and b ∈ Y the update
function f [a 7→ b] is defined by

f [a 7→ b](x) =

{
b if x = a

f(x) otherwise
.

Set-theoretic notation Although our notation is standard, one subtle point is that we
write A ⊂ B for the strict subset relation and A ⊆ B for the non-strict one. For example,
A ⊂ B implies A 6= B. Similarly, A ⊆ B if and only if A ⊂ B or A = B.

Equivalence classes If ∼ is an equivalence relation on a set A then we write A/∼ for the
set of equivalence classes (the quotient set). For any x ∈ A, we write [x] for the equivalence
class containing x.

Acknowledgements Thank you to Agustin Rodriguez Agudo, Boštjan Gec, Svenja Gries-
bach, Andraž Jelenc, Severin Mejak, Andraž Pustoslemšek and especially Davorin Lešnik for
suggesting improvements to earlier versions of these notes.

ii

1 Algorithms and Turing Machines

1.1 Algorithms

Throughout the history of mathematics, computation has been an intrinsic part of mathemat-
ics. Intimately associated with computation is the notion of algorithm: a precise description
of the sequence of steps required to carry out a computation.

The very incomplete list below recalls some historically notable algorithms.

• Euclid’s algorithm to compute gcd.

• Algorithms to add, substract, multiply and divide numbers in decimal.

• Algorithms for approximating real numbers to arbitrary precision; e.g., π, e, computing
trigonometric functions, logarithm, square root, etc.

• Many widely applied modern algorithms such as: the simplex algorithm for linear pro-
gramming, algorithms to efficiently test the primality of a large number, etc.

Until the end of the 19th century, mathematicians were content to recognise algorithms
on a case-by-case basis. However, the situation changed in the 20th century. In 1900, right
at the turn of the century, Hilbert’s famous 23 problems in mathematics included a challenge
directly involving the notion of algorithm.

Hilbert’s 10th Problem. Find an algorithm to determine whether a given polynomial
equation with integer coefficients (Diophantine equation) has an integer solution.

Some years later, in 1928, Hilbert asked:

Hilbert’s Entscheidungsproblem. Find an algorithm to determine whether a sentence in
first-order logic is valid in all structures (equivalently is provable in first-order logic).

The two problems are related. A positive solution to Hilbert’s Entscheidungsproblem would
a fortiori provide a positive solution to his 10th Problem.

In 1936, Alonzo Church and Alan Turing independently proved that there does not exist
any algorithm solving the Entscheidungsproblem. In technical language: Hilbert’s Entschei-
dungsproblem is undecidable. Many years later, in 1970, Yuri Matiyasevich proved that
Hilbert’s 10th Problem is also undecidable.

In order to be in a position to give a mathematical proof that there exists no possible
algorithm, one needs to answer a fundamental question:

• What is an algorithm?

We shall begin this course with Turing’s answer to this question, defined in terms of his
eponymous Turing machines. This answer has withstood the test of time. It is mathemat-
ically simple, and it has conceptual clarity in directly appealing to our intuitions about the
mechanics of the process of computation.

Some of the considerations motivating the definition of a Turing machine are listed below.

• An algorithm should be a finite description of a process of computation.

1

• An algorithm should specify the computation process entirely.

• The process of following an algorithm should be one that can be carried out in practice
without any creative input.

• Thus the process of following an algorithm should be one that could be carried out by
a suitable machine.

• The machine will perform steps in time and will need enough “working space” to carry
out calculations. For maximum generality, we should not bound time and space in
advance.

The motivation and how it leads to the definition of a Turing machine are discussed both
thoroughly and eloquently in Turing’s original 1936 article, “On computable numbers, with
an application to the Entscheidungsproblem”. This can be found on the course webpage. You
are recommended to have a look at this classic paper.

1.2 Turing Machines

Definition 1.1 (Turing machine). A (deterministic) Turing machine is specified by:

• a finite set Γ (the tape alphabet) with � ∈ Γ (the blank symbol);

• a finite set Q of states with start ∈ Q (the start state);

• a partial function δ : Q× Γ ⇀ Q× Γ× {−1, 0,+1} (the transition function).

Definition 1.2 (Tape configuration). A tape configuration is a function t : Z→ Γ satisfying:

∃n ≥ 0 ∀m ∈ Z |m| ≥ n =⇒ t(m) = � .

One thinks of t as an infinite (in both directions) tape divided into squares indexed by integers.
The function t gives the symbol written on each square. The condition says that only finitely
many squares are non-blank.

Every word x = x0x1 . . . xk−1 ∈ Γ∗ and j ∈ Z determine a tape configuration x@j

x@j(i) =

{
xi−j if j ≤ i < j + k

� otherwise
.

That is, the word x is written on the tape, with its first symbol at position j, and, apart from
x, the tape is blank.

Note that, for example, ε (the empty word), � and �� are distinct words that give rise
to the same tape configuration.

Definition 1.3 (Machine configuration). A (machine) configuration is a triple (q, t, i) where:

• q ∈ Q (the current state)

• t is a tape configuration;

• i ∈ Z (the head position).

2

We write Config for the set of all possible machine configurations.

Single computation steps are given by the partial function

step : Config ⇀ Config

defined by:

step(q, t, i) =

{
(q′, t[i 7→ a], i+ d) if δ(q, t(i)) = (q′, a, d)

undefined if δ(q, t(i)) is undefined
.

Here we use the update function t[i 7→ a] as defined on page ii.

Definition 1.4 (Halting). A configuration (q, t, i) is called a halting configuration if step is
undefined on (q, t, i). We write t⇓(q, t′, i) if (q, t′, i) is a halting configuration and there exists
n ≥ 0 with

stepn(start, t, 0) = (q, t′, i) .

A state q is called a halting state if, for every a ∈ Γ, the transition function δ is undefined on
(q, a).

Observe that if q is a halting state then every configuration of the form (q, t, i) is a halting
configuration.

Turing machines have different modi operandi depending on their purpose. We consider
two purposes:

• recognising formal languages.

• computing partial functions (especially on the natural numbers);

1.3 Recognising formal languages

We assume a Turing machine comes with:

• a distinguished input alphabet Σ ⊆ Γ− {�};

• distinct halting states accept, reject ∈ Q.

Recall that a language is a subset L ⊆ Σ∗.

Definition 1.5 (Acceptance/rejection).

• A TM accepts x ∈ Σ∗ if x@0⇓(accept, t, i) for some t, i.

• A TM rejects x ∈ Σ∗ if x@0⇓(reject, t, i) for some t, i.

Definition 1.6 (Recognised language). The language recognised by a TM M is

L(M) := {x ∈ Σ∗ |M accepts x}

Definition 1.7 (Decidability/semidecidability).

3

• L ⊆ Σ∗ is said to be semidecidable (or semicomputable, or computably enumerable) if
there exists a TM M such that L = L(M).

(We also say that the machine M semidecides L.)

• L ⊆ Σ∗ is said to be decidable (or computable) if there exists a TM M such that
L = L(M) and also M rejects every x ∈ Σ∗ − L.

(We also say that the machine M decides L.)

Proposition 1.8. If a language L is decidable then it is semidecidable.

1.4 Computing partial functions

We assume a Turing machine comes with:

• a distinguished input/output alphabet Σ ⊆ Γ− {�};

• a distinguished halting state halt ∈ Q.

Definition 1.9 (Computing a partial function). A TM is said to compute a partial function
f : Σ∗ ⇀ Σ∗ if:

• for all x ∈ dom(f), it holds that x@0⇓(halt, f(x)@i, i) for some i ∈ Z; and

• for all x /∈ dom(f), it is not the case that x@0⇓(halt, t, i), for any t, i.

Definition 1.10 (Computable partial function). A partial function f : Σ∗ ⇀ Σ∗ is said to be
computable if there exists some TM that computes it.

(Terminology issue: many authors use partial computable function, whereas we say computable
partial function.)

1.5 Variant Turing machines

Many variations on the notion of Turing machine can be defined. In every case it is possible
to simulate the variant machines using Turing machines in the sense we defined.

Commonly considered such variations include, for example, the following.

1. Machines with k tapes, where k > 1, each with its own head.

2. Machines with multiple heads on the same tape.

3. Machines with heads that can move between tapes.

4. Machines with two (or higher) dimensional grids of symbols instead of one-dimensional
tapes.

5. Machines in which individual tape cells contain words rather than just single letters.

6. etc.

We look at the first of these examples, k-tape machines in more detail below. It is a worthwhile
exercise to consider a couple of other variants and convince yourself (at a high level) that you
understand how to simulate such more complicated machines on an ordinary Turing machine.

4

1.6 Multi-tape Turing machines

For k ≥ 1, a k-tape Turing machine has k distinct two-way infinite tapes, each with its own
read/write head.

Definition 1.11 (k-tape Turing machine). For k ≥ 1 a (deterministic) k-tape Turing machine
is specified by:

• a finite set Γ (the tape alphabet) with � ∈ Γ;

• a finite set Q of states with start ∈ Q;

• a partial function δ : Q× Γk ⇀ Q× Γk × {−1, 0,+1}k.

Definition 1.12 (Machine configuration). A (machine) configuration is a tuple (q, t1, . . . , tk, i1, . . . , ik)
where:

• q ∈ Q (the current state)

• t1, . . . , tk are k tape configurations;

• i1, . . . , ik ∈ Z (the head positions).

We again write Config for the set of all possible machine configurations.

The single-computation-step partial function

step : Config ⇀ Config

is defined in the natural way:

step(q, t1, . . . , tk, i1, . . . , ik) =

=


(q′, t1[i1 7→ a1], . . . , tk[ik 7→ ak], i1+d1, . . . , ik+dk)

if δ(q, t1(i1), . . . , tk(ik)) = (q′, a1, . . . , ak, d1, . . . , dk)

undefined

if δ(q, t1(i1), . . . , tk(ik)) is undefined

.

1.7 Simulating a k-tape machine by a single-tape machine

We show how to simulate a k-tape Turing machine using a single tape Turing machine.
Suppose we have a k-tape TM:

M = (Γ, Q, δ : Q× Γk ⇀ Q× Γk × {−1, 0,+1}k) .

We define an associated single tape machine:

M̃ = (Γ̃, Q̃, δ̃ : Q̃× Γ̃ ⇀ Q̃× Γ̃× {−1, 0,+1}) .

To do this, we need to define Γ̃, Q̃, and δ̃, and we need to say how the execution of the resulting
single tape Turing machine relates to the execution of the original multi-tape machine.

We shall give only the main ideas of the construction. Constructions on Turing machines
can be rather tedious if given in overmuch detail.

5

The new tape alphabet Γ̃ is defined by

Γ̃ = Γ ∪ {4, ‖} .

The new set of states Q̃ is quite complex, and we shall not describe it fully. But, importantly,
it contains within it a subset

{nowq | q ∈ Q} ⊆ Q̃ .

The main idea is as follows. The machine M̃ will start in the state nowstart in a ma-
chine configuration that encodes the starting configuration of the k-tape machine M . As
the execution of the k-tape machine M proceeds as a sequence of steps going from state to
state, start → q1 → q2 → . . . , the single-tape machine M̃ will go through states nowstart →+

nowq1 →+ nowq2 → . . . , where the symbol →+ means many steps of computation by the

single-tape machine M̃ . Moreover, whenever the single-tape machine M̃ is in the state
nowqi , the machine configuration at the time will correctly encode the machine configuration
of M when it is in state qi.

Definition 1.13 (Configuration encoding). A machine configuration (q̃, t̃, ĩ) of M̃ is said to
encode a machine configuration (q, t1, . . . , tk, i1, . . . , ik) of M if all of the following hold.

• q̃ = nowq .

• The tape t̃ contains exactly k + 1 occurrences of the symbol ‖. Let j0 < j1 < · · · < jk
be the positions at which t̃ is ‖.

• ĩ = j0 .

• The tape t̃ is blank at every i < j0 and at every i > jk.

• The tape t̃ contains exactly k occurrences of the symbol 4. Moreover, if we write
h1 < · · · < hk for the positions at which t̃ is 4 then, for every l = 1 . . . k, we have
jl−1 < hl < jl − 1.

• For every l = 1 . . . k, we have

tl(n) =


t̃(n− il + hl + 1) if n ≥ il and n− il + hl + 1 < jl

t̃(n− il + hl) if n < il and jl−1 < n− il + hl

� otherwise.

(Informally, this means that, if the 4 square at hl is removed from t̃ then the remaining
squares from jl−1 + 1 to jl − 1 fully represent the non-blank portion of the tape tl. The
role of the 4 square at hl is to mark that the l-th head of M , which is at position il of
tl, is pointing to the square on tl that appears at position hl + 1 of t̃.)

The remaining states and transition relation of M̃ are then defined to ensure that the
following simulation property is true.

Proposition 1.14. Let (q, t1, . . . , tk, i1, . . . , ik) be a configuration of the k-tape machine M ,

and let (nowq, t̃, ĩ) be any configuration of M̃ that encodes it. Then the following hold.

6

• If (q, t1, . . . , tk, i1, . . . , ik) → (q′, t′1, . . . , t
′
k, i
′
1, . . . , i

′
k) in one step of computation of M

then (nowq, t̃, ĩ) →+ (nowq′ , t̃′, ĩ′) via possibly many steps of computation of M̃ , where

(nowq′ , t̃′, ĩ′) encodes (q′, t′1, . . . , t
′
k, i
′
1, . . . , i

′
k) and no state of the form nowq′′ is encoun-

tered at any intermediate step in the M̃ computation.

• If (nowq, t̃, ĩ)→+ (nowq′ , t̃′, ĩ′) via possibly many steps of computation of M̃ , where none
of the intermediate steps involve states of the form nowq′′, then (q, t1, . . . , tk, i1, . . . , ik)→
(q′, t′1, . . . , t

′
k, i
′
1, . . . , i

′
k), in one step of computation of M , such that (nowq′ , t̃′, ĩ′) encodes

(q′, t′1, . . . , t
′
k, i
′
1, . . . , i

′
k).

• If q is a halting state of M then nowq is a halting state of M̃ .

While we don’t give the details of the definitions of Q̃ and δ̃, the idea behind the full
definition of M̃ is that it should compute as follows.

1. The head scans the tape from left to right until the last ‖ is encountered (this can be
recognised because it is the (k+ 1)-th ‖ symbol). Along the way, the squares pointed to
by the k heads of M are read, and the information about which symbols these squares
contain (which can be picked up as these are the symbols that lie to the right of 4
symbols on t̃) is recorded in the state of M̃ .

2. Now that all k head symbols have been read, the machine M̃ goes into a state that
records what action M takes in this situation, as determined by the transition function
δ. This information consists of: a destination state q′, a k-tuple of write symbols, and
a k-tuple of head displacements.

3. The tape t̃ is now scanned from right to left. Each time a 4 symbol is encountered
the appropriate action is taken that correctly encodes the action that M takes on the
relevant tape. The actions may involve moving the head and/or overwriting a symbol.
This is achieved by appropriately editing the tape t̃ by overwriting symbols and by
moving the 4 symbols. Sometimes, if a head needs to move over (or too close to) a
‖ symbol, then a new square may need to be ‘inserted’ into the tape to create enough
room.

4. Once the head arrives at the leftmost ‖ symbol (this can again be detected because it
will be the (k+1)-th such symbol encountered) the machine goes into state nowq′ , where

q′ is the destination state from step 2 above, which is accessible to M̃ at this point, as
it is recorded in the current state.

If you like such things, it is quite a fun exercise to work out the full details of the definition
of M̃ for yourself.

7

2 Undecidability and the Universal Turing Machine

As Turing machines have finite specifications, there is a countable infinity of Turing machines
(up to a natural notion of equivalence of Turing machines). Since a Turing machine recognises
exactly one language, only countably many languages can be recognised by a Turing machine.
That is, there are countably many semidecidable languages. On the other hand, for any
nonempty finite Σ, there are continuum-many (that is 2ℵ0 -many) languages L ⊆ Σ∗. The
cardinality difference between continuum-many and countably-many shows that there exist
(continuum-many) different languages that cannot be recognised by any TM. Such languages
are not semidecidable, and hence a fortiori undecidable (i.e., not decidable).

It is much more interesting to see that there exist languages that are semidecidable but
not decidable. A major goal of todays lecture is to show that such languages exist. Thus
decidability is in general a stronger property than semidecidability.

2.1 Encoding Turing machines

The specification of any particular Turing machine involves only a finite amount of informa-
tion: a finite tape alphabet, a finite number of states, and a finite transition function. It is not
hard to see that all this information can be captured in a single word over a suitable alphabet.
The resulting word can then be given as input to another Turing machine. This provides a
way of potentially passing one Turing machine as an input to another Turing machine.

We give an explicit encoding of a Turing machine M = (Γ, Q, δ) as a word over the
alphabet

ΣU = { 0, 1, −1, [,] , ‖ , • } .

We do this for a TM M that is set up for language recognition (in particular it possesses
accept and reject states), but the same idea works just as easily for Turing machines that
have other modi operandi.

First, we encode each state q ∈ Q by a chosen word

〈q〉 ∈ {−1, 0, 1}l ,

for any chosen l ≥ dlog3(|Q|)e. (If one wishes to be economical one should choose l =
dlog3(|Q|)e.) In doing so we require that

〈start〉 = 0l :=

l︷ ︸︸ ︷
0 0 . . . 0

〈accept〉 = 1l

〈reject〉 = (−1)l

Similarly, we choose an encoding of each character a ∈ Γ as a string

〈a〉 ∈ {−1, 0, 1}m ,

for any chosen m ≥ dlog3(|Γ|)e. In doing so we require: 〈�〉 = 0m.
For every instruction

δ(q, a) = (q′, b, d) q, q′ ∈ Q a, b ∈ Γ d ∈ {−1, 0, 1} ,

8

we encode the individual instruction as the word

[〈q〉 • 〈a〉 ‖ 〈q′〉 • 〈b〉 • d] ∈ Σ∗U .

Note that this word always has length 2l + 2m+ 7.
Suppose that M ’s transition function δ is defined on exactly k distinct pairs (q, a). That

is, the Turing machine can be defined by giving a list of k instructions. Then the encoding
〈M〉 of the entire TM is defined by:

〈M〉 = 〈start〉 • 〈�〉 [〈q1〉 • 〈a1〉 ‖ 〈q′1〉 • 〈b1〉 • d1] . . . [〈qk〉 • 〈ak〉 ‖ 〈q′k〉 • 〈bk〉 • dk]

Here, the string 〈start〉 records (an upper bound on) the number of states, 〈�〉 records (a
bound on) the size of the encoded tape alphabet, and the remaining k components list all
instructions needed to fully specify the transition function of M .

We can similarly (and more easily) encode any word w = w0 . . . wn−1 over Γ as a word
〈w〉 over ΣU :

〈w〉 := 〈w0〉 • · · · • 〈wn−1〉

2.2 An undecidable language

We can now define the language that we shall show to be semidecidable but not decidable.

Laccept = {〈M〉 • 〈w〉 | M is a TM with tape alphabet Γ ⊇ ΣU , w ∈ ΣU
∗, and M accepts w} .

Theorem 2.1. The language Laccept is undecidable.

Proof. Suppose, for contradiction that Laccept is decidable, and let D be a TM with input
alphabet ΣU and tape alphabet Γ ⊇ ΣU that decides Laccept.

Define a new TM, N , with input alphabet ΣU that runs as follows.

• N reads its input string v and converts it to the string v•〈v〉, resetting the head position
to the left of the string.

• N then proceeds as the machine D, except that:

• if the machine D halts in the accept state then N halts in the reject state; and

• if the machine D halts in the reject state then N halts in the accept state.

We now consider the behaviour of the TM N when it is given an input string of the
form v = 〈M〉 for some TM M . In this case, N proceeds as the machine D on input string
〈M〉• 〈〈M〉〉. Since D decides the language Laccept, the execution of D necessarily terminates,
with final state:

• accept iff 〈M〉 • 〈〈M〉〉 ∈ Laccept iff M accepts 〈M〉; and

• reject iff 〈M〉 • 〈〈M〉〉 /∈ Laccept iff M does not accept 〈M〉.

Thus the execution of N on 〈M〉 terminates, in final state:

• reject iff M accepts 〈M〉; and

9

• accept iff M does not accept 〈M〉.

In particular, if we run N with its own encoding 〈N〉 as input string then the last point
above gives us that

• the execution of N on input string 〈N〉 terminates in the accept state iff N does not
accept 〈N〉.

However, by definition of acceptance, N accepts 〈N〉 iff the execution of N on input 〈N〉
terminates in the accept state.

This gives the required contradiction.

2.3 The universal Turing machine

In order to prove that the language Laccept is semidecidable, we require a fundamental con-
struction, due to Turing: the construction of a universal Turing machine. For convenience,
we shall define the universal machine as a 3-tape Turing machine. It can then be converted
to a single-tape Turing machine by following the prescription in Lecture 1.

The idea of the universal machine U is as follows. Suppose M is any (single tape) Turing
machine with tape alphabet Γ, and w is any word over Γ− {�} then if we run the TM U on
input string 〈M〉 • 〈w〉, the resulting execution will imitate the execution of the TM M on
input string w. This is a universal Turing machine because it is able to simulate every Turing
machine. (The restriction to single tape machines M is no limitation because of Lecture 1.)

We begin by preparing the ground for how U will imitate M . In order to achieve this, every
machine configuration encountered during the execution of M needs to have a corresponding
3-tape machine configuration that will arise during the execution of U . To permit this, the
TM U has a special state snapshot, which will record that U is currently in a configuration
that encodes a configuration of M . In more detail, a configuration of U is said to encode a
configuration (q, t, i) of M if:

• The current state of U is snapshot.

• Tape 1 of U contains 〈M〉, with its tape head pointing to the first character.

• Tape 2 contains 〈q〉, with its tape head pointing to the first character.

• Tape 3 contains 〈w〉, where w ∈ Γ∗ is a subword of the tape configuration t that
includes all non-blank symbols of t. Tape head 3 must point to the first character of the
occurrence of the substring 〈t(i)〉 that corresponds to the occurrence of the character
t(i) at position i of t, which the tape head of M is pointing to.

The lecture will discuss the construction of U (at a high level). In these notes, instead of
giving the construction, we summarise the important properties of U in a sequence of lemmas
leading to a theorem that characterises the behaviour of U .

Lemma 2.2 (Initial preparation). When U is executed from the start state on input string
〈M〉•〈w〉 on tape 1 (with the other two tapes empty) then, after finitely many steps of compu-
tation, U reaches a configuration that encodes the M -configuration (start, w@0, 0), moreover
this is the first configuration in which U is in the snapshot state.

10

Lemma 2.3 (Single-step simulation). Let C be a configuration of U that encodes a configu-
ration (q, t, i) of M .

• If (q, t, i)→ (q′, t′, i′) in a single step of computation of M then C →+ C ′ in many steps
of computation of U , where C ′ encodes (q′, t′, i′), and no intermediate snapshot state
arises between C and C ′.

• If C →+ C ′ in many steps of computation of U , where C ′ is in a snapshot state and
no intermediate snapshot state arises between C and C ′, then (q, t, i) → (q′, t′, i′) in a
single step of computation of M where C ′ encodes (q′, t′, i′).

Lemma 2.4 (End computation). Suppose U is in a configuration that encodes a halting
M -configuration (q, t, i).

• If q is accept then after finitely many steps of computation U terminates in the accept
state.

• If q is reject then after finitely many steps of computation U terminates in the reject
state.

• If q is any other state then after finitely many steps of computation U terminates in a
state that is neither accept nor reject.

Theorem 2.5 (Universal machine). There is a universal Turing machine U with the following
behaviour. Suppose M is any Turing machine with tape alphabet Γ, and w is any word over
Γ−{�}. If we run U on the input string 〈M〉 • 〈w〉, then the resulting execution of U enjoys
the following properties.

• It terminates if and only if M terminates on input string w.

• It terminates in the accept state if and only if M accepts w.

• It terminates in the reject state if and only if M rejects w.

Proof. This is just a matter of piecing together the lemmas above.

2.4 The semidecidability of Laccept

Theorem 2.6. The language Laccept is semidecidable.

Proof. Construct a TM S that does the following.

• First it reads the input string v ∈ Σ ∗U and checks if this is of the form 〈M〉 • 〈w〉 for
some Turing machine M with tape alphabet Γ and word w ∈ (Γ− {�})∗.

• If v is not of the form 〈M〉 • 〈w〉 then S rejects v. (We could equally well allow it to go
into a loop.)

• If v is of form 〈M〉 • 〈w〉 then S proceeds as the universal machine U on input string v.

Clearly S accepts v if and only if v ∈ Laccept.

11

3 Representations

In Lecture 1, we defined what it means for a TM to compute a (partial) function on words over
an alphabet Σ. It is straightforward to generalise the definition to (partial) functions that
map words over one input alphabet Σ1 to words over a potentially different output alphabet
Σ2. Turing machines computing such functions are assumed to come with:

• distinguished input and output alphabets Σ1 and Σ2 respectively with Σ1∪Σ2 ⊆ Γ−{�},

• and a distinguished halting state halt ∈ Q.

Definition 3.1. Such a TM is said to compute a partial function f : Σ∗1 ⇀ Σ∗2 if:

• for all x ∈ dom(f), it holds that x@0⇓(halt, f(x)@i, i) for some i ∈ Z; and

• for all x /∈ dom(f), it is not the case that x@0⇓(halt, t, i), for any t, i.

Definition 3.2. A partial function f : Σ∗1 ⇀ Σ∗2 is said to be computable if there exists some
TM that computes it.

For any alphabet Σ, it is trivial that the identity function x 7→ x on Σ∗ is computable. It
also holds that computable partial functions are closed under composition.

Before stating this formally, we consider how to define the composition g ◦ f : X ⇀ Z of
two partial functions f : X ⇀ Y and g : Y ⇀ Z. As expected, this composition has the action
x 7→ g(f(x)). The point to pay attention to is that (g◦f)(x)↓ only if both f(x)↓ and g(f(x))↓.
In the case that f(x)↑, we do not give a value to the expression g(f(x)). On occasion, a little
care is needed with this point. For example, if g is a constant function (such as g(y) = 0, for
all y) then nonetheless g(f(x)) is considered as undefined on values x for which f(x)↑.

Proposition 3.3. Let f : Σ∗1 ⇀ Σ∗2 and g : Σ∗2 ⇀ Σ∗3 be computable. Then the composite
partial function g ◦ f : Σ∗1 ⇀ Σ∗3 is computable.

Proof. Suppose we have TMs M computing f and M ′ computing g. Define a TM for g ◦ f
as follows. First run M on the input. If the execution of M terminates in halt then continue
from the current tape-head configuration by running M ′.

The above development is all well and good if one is only concerned with computing unary
(that is, single argument) functions on words. However, it is frequently useful to compute
other forms of function; for example, functions of several arguments, and functions on forms
of data that are not directly given as words. Let’s start with the second of these points.

3.1 Computing functions on N

Functions on the natural numbers N play a fundamental role in mathematics. There is
an obvious approach to computing such functions using Turing machines, encode natural
numbers as words.

One natural encoding is to represent numbers as binary strings, using the binary alphabet
Σb := {0, 1}. One way of doing this is to encode each number n ∈ N uniquely as the word
bin(n) ∈ Σ∗b defined as the the binary representation of n with no leading 0s (so bin(0) = ε).

This encoding leads to an obvious definition of computable (partial) function on N.

12

Definition 3.4 (Computing a partial function on N). A TM is said to compute a partial
function f : N⇀ N if it computes a partial function g : Σ∗b ⇀ Σ∗b satisfying:

• for all n ∈ dom(f), it holds that g(bin(n))↓ and g(bin(n)) = bin(f(n)), and

• for all n ∈ N− dom(f), it holds that g(bin(n))↑.

(When the above conditions are satisfied we say that g realises f .)

Notice that the above definition leaves unspecified how g behaves on words whose first
character is 0. For this reason, the function g on words is not uniquely determined by the
function f on N. In the other direction, however, the function g does uniquely determine the
function f . That is, any computable partial function g : Σ∗b ⇀ Σ∗b on words realises at most
one partial function f : N⇀ N.

Definition 3.5 (Computable partial function on N). A partial function f : N ⇀ N is said
to be computable if there exists some TM that computes it (equivalently if there exists a
computable partial function g : Σ∗b ⇀ Σ∗b that realises f).

3.2 Representations

There is some arbitrariness in the choice of encoding of natural numbers used above. A
second possibility, for example, would be to encode natural numbers non-uniquely, by allowing
leading 0s and considering every word w ∈ Σ∗b as representing a corresponding natural number
in binary notation. So, for example, the strings 11, 011, 0011 would be three different
representations of the number 3. Similarly, ε, 0, 00 would be three different representations
of the number 0.

A third (albeit less efficient) possibility is to forego binary representations and encode
numbers as strings over the unary alphabet Σu := {0}. In this encoding, each number n is
encoded uniquely as the word 0n ∈ Σ∗u.

Still further possibilities arise by using larger alphabets (e.g., the alphabet {0, . . . , 9} of
decimal digits) and using base N notation (with leading 0s or without) where N > 2.

It turns out that any of the above approaches to encoding natural numbers can be used to
define the notion of computable partial function on N. Moreover, all choices give rise to the
same robust notion of computability. We illustrate this, by comparing the three encodings
discussed above in detail: binary representation without leading 0s, binary representation
allowing leading 0s, and unary representation. Each of these three encodings has the following
ingredients in common.

• There is a representing alphabet Σ.

• There is a surjective partial function γ : Σ∗⇀⇀N, whose domain dom(γ) is the set of words
encoding numbers, and whose action is to map every such word to the unique number
it represents. (Here the notation ⇀⇀ indicates a surjective partial function. Recall that
surjectivity means that, for every x ∈ X, there exists w ∈ Σ∗ with γ(w) = x.)

We explicitly exhibit the representation functions γ : Σ∗⇀⇀N that arise in each of the three
encodings of N under consideration. In the case of the first encoding (binary representation

13

with no leading 0s), the alphabet is Σb and the surjective partial function γN : Σ∗b⇀⇀N is:

dom(γN) := {ε} ∪ {1w | w ∈ Σ∗b}

γN : w ∈ dom(γN) 7→
|w|−1∑
i=0

w|w|−i−1 · 2i

For the second encoding (binary representations allowing leading 0s), the alphabet is Σb and
the surjective partial function γ′N : Σ∗b⇀⇀N is defined by:

dom(γ′N) := Σ∗b

γ′N : w ∈ dom(γ′N) 7→
|w|−1∑
i=0

w|w|−i−1 · 2i

For the third encoding (unary representation), the alphabet is Σu and the surjective partial
function γ′′N : Σ∗u⇀⇀N is defined by:

dom(γ′′N) := Σ∗u

γ′′N : w ∈ dom(γ′′N) 7→ |w|

Notice that in the second and third encodings the representing functions are total. Also, in
the first and third encodings, the representing functions are injective: every natural number
has a unique representation.

We shall see that one can define what it means for a (partial) function on N to be com-
putable, whenever one has a representation of N of the general form above. This definition
is not restricted to (partial) functions on the natural numbers. It makes sense for (partial)
functions between any two sets equipped with a representation.

Definition 3.6 (Representation). A representation of a set X by words over an alphabet Σ
is a surjective partial function γ : Σ∗⇀⇀X.

When Σ 6= ∅, the set Σ∗ has countably infinite cardinality (i.e., cardinality ℵ0). Thus any
represented set X is necessarily countable. (Finite sets are considered as being countable.)

Representations can be specified as triples (X,Σ, γ). However, we often simply refer to γ,
leaving X and Σ implicit. Given a representation γ : Σ∗⇀⇀X, we call any word w such that
γ(w) = x a name (or realiser) for x.

Definition 3.7 (Computable partial function). Given representations γ1 : Σ∗1⇀⇀X1 and
γ2 : Σ∗2⇀⇀X2, we say that a partial function f : X1 ⇀ X2 is (γ1 → γ2)-computable if there
exists a computable partial function g : Σ∗1 ⇀ Σ∗2 such that, for every x ∈ X1 and γ1-name w
for x,

• g(w)↓ if and only if f(x)↓, and

• g(w)↓ implies g(w) is a γ2-name for f(x).

(Equivalently, for any w ∈ dom(γ1), (i) γ2(g(w)) ' f(γ1(w)), and (ii) g(w)↓ ⇒ g(w) ∈
dom(γ2).)

A partial function g : Σ∗1 ⇀ Σ∗2 satisfying the conditions above is said to be a realiser for the
function f .

14

If f is (γ1 → γ2)-computable and g realises f then the following diagram of partial
functions commutes, for all w ∈ dom(γ1).

Σ∗1
g

⇀ Σ∗2

X1

γ1

�

f
⇀ X2

γ2

�

For total functions f the definition of computability is equivalent to the commutativity of the
above diagram for all p ∈ dom(γ1). For a partial function f , the definition of computability
is stronger than commutativity. (Exercise: why is this?)

Observe that there may be many g realising the same f . However, for any partial function
g : Σ∗1 ⇀ Σ∗2, there is at most one partial function f : X1 → X2 realised by g. That is,
realisers determine the functions they realise. This is conceptually natural. Realisers are
TM-computable functions considered as computing abstract functions between represented
sets. It seems natural that a real-world computation on words should determine the set-
theoretic function between represented sets that it computes.

As examples, we can instantiate the above definition using our three different represen-
tations of N defined earlier, namely γN : Σ∗b⇀⇀N , γ′N : Σ∗b⇀⇀N and γ′′N : Σ∗u⇀⇀N . This gives
three potential redefinitions of what it means for a partial function f : N ⇀ N to be com-
putable namely that it is (γN → γN)-computable, that it is (γ′N → γ′N)-computable, or that it
is (γ′′N → γ′′N)-computable. Fortunately, all three redefinitions give rise to the same notion of
computability. Moreover, all three coincide with Definition 3.5.

One could also consider what notions of computability one obtains for partial functions on
N if one uses different representation of N for the domain and codomain; for example, asking
what the (γ′N → γ′′N)-computable functions are. Again, in every case, one obtains the notion
defined in Definition 3.5. This notion thus proves to be very robust.

The above claims are proved in the following way. First, one proves that (γN → γN)-
computability is literally a reformulation of Definition 3.5. (Exercise: verify this.) One then
proves that the representations γN, γ′N and γ′′N are all equivalent in the sense defined in the
next section. The coincidence of notions of computability across all combinations of such
representations is then a consequence of Proposition 3.10 below.

3.3 Composition and equivalence

We consider some generalities about represented sets and computable functions between them.
For any representation γ : Σ∗⇀⇀X, it is trivial that the identity function x 7→ x on X is
(γ → γ)-computable. It also holds that the notion of computable partial function is closed
under composition.

Proposition 3.8. Suppose γ1 : Σ∗1⇀⇀X1, γ2 : Σ∗2⇀⇀X2 and γ3 : Σ∗3⇀⇀X3 are representations,.
Let f1 : X1 ⇀ X2 and f2 : X2 ⇀ X3 be (γ1 → γ2)- and (γ2 → γ3)-computable respectively.
Then the composite partial function f2 ◦ f1 : X1 ⇀ X3 is (γ1 → γ3)-computable

The proof of the above result is routine in the sense that the proof falls out from the definitions.
Nonetheless, since the definition of computable partial function is somewhat involved there

15

is a line of argument that needs to be followed. Since we are still at an early point in the
course, we write out this argument in detail.

Proof. Suppose that g1 : Σ∗1 ⇀ Σ∗2 realises f1 and g2 : Σ∗2 ⇀ Σ∗3 realises f2. The composite
function g2 ◦ g1 : Σ∗1 ⇀ Σ∗3 is computable by Proposition 3.3. We show that g2 ◦ g1 realises
f2 ◦ f1. We need to show that, for all w ∈ dom(γ1), (i) γ3((g2 ◦ g1)(w)) ' (f2 ◦ f1)(γ1(w)),
and (ii) (g2 ◦ g1)(w)↓ ⇒ (g2 ◦ g1)(w) ∈ dom(γ3).

For (i), we have

γ3(g2(g1(w))) ' f2(γ2(g1(w))) ' f2(f1(γ1(w))) .

The second Kleene equality holds because g1 realises f1, hence γ2(g1(w)) ' f1(γ1(w)). Simi-
larly g2 realises f2, so γ3(g2(v)) ' f2(γ2(v)), for all v ∈ dom(γ2). This gives the first Kleene
equality in the case that g1(w) ∈ dom(γ2), which holds whenever g1(w)↓ (because w ∈ dom(γ1)
and g1 realises f1). The first Kleene equality also holds in the remaining case that g1(w)↑,
since both sides of it are then undefined.

For (ii), suppose g2(g1(w))↓. Then g1(w)↓ so g(w) ∈ dom(γ2), because w ∈ dom(γ1) and
g1 realises f1. Since g(w) ∈ dom(γ2) and g2(g1(w))↓, it holds that g2(g1(w)) ∈ dom(γ3),
because g2 realises f2.

Definition 3.9 (Equivalent representations). Two representations γ1 : Σ∗1⇀⇀X and γ2 : Σ∗2⇀⇀X
of the same set X are said to be equivalent if the identity function x 7→ x on X is both
(γ1 → γ2)- and (γ2 → γ1)-computable.

Proposition 3.10. Suppose that γ1 : Σ∗1⇀⇀X1 and γ′1 : (Σ′1)∗⇀⇀X1 are equivalent representa-
tions and that γ2 : Σ∗2⇀⇀X2 and γ′2 : (Σ′2)∗⇀⇀X2 are also equivalent. Then a partial function
X1 ⇀ X2 is (γ1 → γ2)-computable if and only if it is (γ′1 → γ′2)-computable.

Proof. Suppose f : X1 ⇀ X2 is (γ1 → γ2)-computable. By equivalence, the identity functions
1X1 and 1X2 are (γ′1 → γ1)- and (γ2 → γ′2)-computable respectively. By Proposition 3.8, the
composite 1X2 ◦ f ◦ 1X1 is (γ′1 → γ′2)-computable. That is, f is (γ′1 → γ′2)-computable. The
converse, that (γ′1 → γ′2)-computability implies (γ1 → γ2)-computability is proved similarly.

Proposition 3.11. The three representations γN, γ′N and γ′′N of N defined above are equivalent.

The proof is left as an exercise.

3.4 Product representations

At the start of the lecture, we raised the question of computability of functions of several
arguments. One way of defining computability for functions taking k arguments, say, would
be to use a Turing machine with at least k tapes, and to ask for each argument of the
function to be given as input on a separate tape. There is nothing technically wrong with
this, but there is a more useful and flexible alternative that does not have such a dependency
on the underlying TM model. Moreover, the alternative gives rise to the same notion of
computability.

Given k represented sets

γ1 : Σ∗1⇀⇀X1 . . . γk : Σ∗k⇀⇀Xk

16

we define a product representation

γ : Σ∗ ⇀⇀ (X1 × · · · ×Xk)

as follows.

Σ := (Σ1 ∪ · · · ∪ Σk)] {‘,’}
dom(γ) := {w1 , . . . ,wk | w1 ∈ dom(γ1) and . . . and wk ∈ dom(γk)}

γ(w1 , . . . ,wk) := (γ1(w1), . . . , γk(wk))

Here the] symbol is a disjoint union: the comma symbol is chosen so that it does not
appear in any of the alphabets Σ1, . . . ,Σk. An element (x1, . . . , xk) ∈ X1 × · · · ×Xk is then
represented as tuple of words w1 , . . . ,wk separated by the comma symbol, where each word
wi is a name for xi. The requirement that the comma symbol does not appear in the Σi

alphabets ensures that the word w1 , . . . ,wk can only be parsed as a k-tuple in one way.
We shall usually write the product representation as

γ1 × · · · × γk : Σ∗γ1×···×γk ⇀⇀ (X1 × · · · ×Xk)

to have a more precise notation for its components.
Given representations γ1 : Σ∗1⇀⇀X1, . . . , γk : Σ∗k⇀⇀Xk and γ : Σ∗⇀⇀X, we consider a partial

function f : X1× · · · × Xk ⇀ X to be computable with respect to the representations if it is
((γ1×· · ·×γk)→ γ)-computable. We usually abbreviate this to (γ1, . . . , γk → γ)-computable.

Very often, we shall be in the situation that we are concerned with computability on a
set for which we have a standard representation. For example, we take the representation γN
defined above as our standard representation on N. In such cases, we omit explicit reference
to representations when we talk about computability of multi-argument functions on the set
in question. The definition below illustrates this point.

Definition 3.12. A partial function f : Nk ⇀ N is computable if it is (γN, . . . , γN → γN)-
computable (where there are of course k-occurrences of γN on the left side of the arrow).

As might be expected, the notion does not change if the standard representation γN is replaced
by any of our other equivalent representations of N. To prove this, one shows that the product
construction on representations preserves equivalence of representations (exercise).

3.5 Decidable and semidecidable subsets

Definition 3.13 (Demidecidable and semidecidable subset). Let γ : Σ∗⇀⇀X be a representa-
tion. A subset Z ⊆ X is said to be γ-decidable if there exists a language-recognition TM M
that satisfies, for all w ∈ dom(γ),

• if γ(w) ∈ Z then M accepts w; and

• if γ(w) /∈ Z then M rejects w.

Such a TM M is said to γ-decide Z
A subset Z ⊆ X is said to be γ-semidecidable if there exists a language-recognition TM

M that satisfies, for all w ∈ dom(γ),

17

• M accepts w ⇔ γ(w) ∈ Z .

Such a TM M is said to γ-semidecide Z

Note that the above definition only constrains the behaviour of the deciding/semideciding
TMs on inputs w ∈ dom(γ). For example, a deciding TM is not required to halt on input
words w ∈ Σ∗ − dom(γ).

Normally, we shall utilise the above concepts in contexts in which the given representation
is understood, and accordingly we shall simply refer to decidable and semidecidable subsets
without explicitly mentioning γ. Nonetheless, for the remainder of this section we shall
continue to make representations explicit, in order to minimise any scope for ambiguity while
we develop the core material on representations.

We write B := {0, 1} for the set of bits (or booleans). We give this a standard represen-
tation γB : Σ∗b⇀⇀B:

dom(γB) := {0, 1}

γB : w ∈ dom(γB) 7→ w

For any subset Z ⊆ X, we define its characteristic function χZ : X → B and partial-
characteristic function χpZ : X ⇀ B.

χZ(x) =

{
1 if x ∈ Z
0 otherwise

χpZ(x) '

{
1 if x ∈ Z
↑ otherwise

Proposition 3.14. Let γ : Σ∗⇀⇀X be a representation. For any subset Z ⊆ X it holds that:

1. Z is γ-decidable if and only if its characteristic function χZ : X → B is (γ → γB)-
computable.

2. Z is γ-semidecidable if and only if its partial characteristic function χpZ : X ⇀ B is
(γ → γB)-computable.

Proof. We prove statement (1), leaving the argument for statement (2) as an exercise.
For the left-to-right implication, suppose that Z is γ-decidable, and let M be a TM

that decides it. We convert the language-recognition TM M to a function-type TM M ′ that
behaves as follows. M ′ first behaves as M on the input word w. In the case that the execution
of M terminates in accept, the machine M ′ continues by erasing the tape, writing 1 on it
and terminating in halt. If the execution of M terminates in reject, then M ′ erases the tape,
writes 0 on it and terminates in halt. Let g : Σ∗ ⇀ Σ∗b be the partial function computed by
M ′. We claim that g realises χZ . Indeed, for any input word w ∈ dom(γ), we have:

• if γ(w) ∈ Z then M accepts w, so g(w) = 1 = χZ(γ(w)), and

• if γ(w) /∈ Z then M rejects w, so g(w) = 0 = χZ(γ(w)).

Conversely, suppose that χZ is computable. Let M be a function-type TM computing a
realiser g : Σ∗ ⇀ Σ∗b for χZ . We define a language-recognition TM M ′ as follows. M ′ first
behaves as M on the input word w. In the case that the execution of M on w terminates in
halt with the output word 1 on the tape, M ′ halts in the accept state. In the case that M on
w terminates in halt with 0 on the tape, M ′ halts in the reject state. One now easily verifies
that M ′ decides Z (exercise).

18

4 Computable Partial Functions

In Note 3, we defined what it means for a partial function f : Nk ⇀ N to be computable
(Definition 3.12). We call the collection

{f : Nk ⇀ N | f is computable}k≥0

the computable partial functions (also known as the partial computable functions) on N.

(Question: What are the computable partial functions Nk ⇀ N in the case k = 0? In the
literature, this rather trivial case is often excluded from the definition. We include it because
it permits a slightly more elegant treatment in Section 4.1 below.)

The notion of computable partial function is one of fundamental mathematical importance.
It will pervade the rest of this course.

4.1 A mathematical characterisation of the computable partial functions

The main task today is to develop an alternative characterisation of the computable partial
functions, one that is purely mathematical in nature.

Definition 4.1 (primitive recursive functions). The primitive recursive functions are defined
to be the smallest collection

F ⊆ {Nk ⇀ N}k≥0

of partial functions that satisfies properties 1–3 below.

1. (Basic functions)

F contains the zero and successor functions Z : N0 → N and S : N→ N defined by:

Z() = 0 ,

S(x) = x+ 1 .

Also, for each k ≥ 1 and 1 ≤ i ≤ k, F contains the projection function Uki : Nk → N
defined by:

Uki (x1, . . . , xk) = xi .

2. (Composition)

If f : Nk ⇀ N and g1, . . . , gk : Nl ⇀ N are in F then so is the composition

f ◦ (g1, . . . , gk) : Nl ⇀ N ,

defined by

f ◦ (g1, . . . , gk) (x1, . . . , xl) ' f(g1(x1, . . . , xl), . . . , gk(x1, . . . , xl)) .

3. (Primitive recursion)

If f : Nk ⇀ N and g : Nk+2 ⇀ N are in F then so is the partial function

Rfg : Nk+1 ⇀ N ,

19

defined by

Rfg (x1, . . . , xk, 0) ' f(x1, . . . , xk)

Rfg (x1, . . . , xk, x+ 1) ' g(x1, . . . , xk, x,Rfg (x1, . . . , xk, x)) .

The function Rfg is said to be defined by primitive recursion from f and g.

Since the basic functions in 1 are total, and conditions 2 and 3 obviously preserve totality,
we have the result below.

Proposition 4.2. Every primitive recursive function is total.

Definition 4.3 (Partial recursive functions). The partial recursive functions are defined to
be the smallest collection

F ⊆ {Nk ⇀ N}k≥0

of partial functions that satisfies properties 1–3 above and also property 4 below.

4. (Minimisation)

If f : Nk+1 ⇀ N is in F then so is µf : Nk ⇀ N defined by:

µf (x1, . . . , xk) '


the smallest n such that:

f(x1, . . . , xk, n) = 0, and

f(x1, . . . , xk, i) is defined whenever 0 ≤ i < n if such n exists

undefined otherwise

The theorem below justifies the above definition.

Theorem 4.4 (The characterisation theorem). The partial recursive functions are exactly
the computable partial functions.

This significant result gives a characterisation of the computable partial functions that has
an entirely different flavour from the Turing-machine-based definition of what it means to be
a computable partial function.

4.2 The computability of partial recursive functions

This section proves the easier direction of Theorem 4.4, namely that every partial recursive
function is computable. Since the partial recursive functions are defined as the smallest class
of functions closed under 1–4, it is enough to show that the computable partial functions are
closed under 1–4.

Firstly, it is easy to see that the computable partial functions include the basic functions
required by condition 1.

For closure under conditions 2–4, it is easier to use a variant characterisation of computable
k-ary partial function using a multi-tape TM. We state this as a proposition.

Proposition 4.5. A k-ary partial function f : Nk → N is computable if and only if there
exists a (k + 1)-tape TM M with the following behaviour.

20

If M is run in a starting configuration with bin(x1) on tape 1 and . . . and bin(xk)
on tape k with tape k+1 blank then it reaches a halt configuration with y ∈ {0, 1}∗
on tape k+ 1 if and only if y = bin(f(x1, . . . , xk)). Moreover tapes 1– k are left in
their starting configuration.

This result is once again shown by giving a transformation between the relevant kinds of TM,
using similar ideas to Note 1.

Using the above characterisation, it will be shown in the lecture that the computable par-
tial functions are closed under primitive recursion (condition 3). Closure under composition
(condition 2) and minimisation (condition 4) are left as an exercise.

Putting all this together we have shown the following.

Proposition 4.6. Every partial recursive function is computable.

4.3 Encoding data as numbers

The general idea is that discrete data structures can always be encoded as natural numbers,
and computation with such data can be mimicked by computation on encodings.

As example such encodings, we encode pairs N×N of natural numbers and finite sequences
N∗ of natural numbers.

To encode pairs, we define p : N2 → N by

p(x, y) =
1

2
(x+ y)(x+ y + 1) + x .

The following hold.

• The pairing function p : N2 → N is a bijection from N2 to N.

• p is primitive recursive.

• The projection functions q1, q2 : N→ N defined (implicitly) by

q1(p(x, y)) = x q2(p(x, y)) = y ,

are primitive recursive.

To encode finite sequences, we define p·q : N∗ → N by:

pn0 . . . nk−1q = 2n0 + 2n0+n1+1 + 2n0+n1+n2+2 + · · ·+ 2n0+n1+···+nk−1+k−1 .

That is, by:

pwq =

|w|∑
i=1

2(
∑i
j=1 wj−1)+ i−1 .

The following properties hold.

• p·q : N∗ → N is a bijection from N∗ to N.

• p·q : N∗ → N is computable.1 (Exercise: define what this means, by giving N∗ a
suitable representation.)

1This fact is not actually used in the proof below, but is anyway worth noting.

21

• The functions σ : N2 → N and l : N→ N defined below are primitive recursive.

σ(pwq, i) =

{
0 if i ≥ |w|
wi + 1 if i < |w|

l(pwq) = |w| .

4.4 Every computable partial function is partial recursive

We complete Theorem 4.4 with an outline proof of the remaining inclusion.

Proposition 4.7. Every computable partial function is partial recursive.

We make direct use the representation-based definition of k-ary computable partial func-
tion (Definition 3.12). Suppose then that M is a single tape machine with tape alphabet
Γ ⊇ {0, 1, ‘,’} ∪ {�} that computes f : Nk → N. The main idea is to show how the execution
process of the TM M can be simulated using partial recursive functions.

Choose injective (i.e., one-to-one) functions

r : Γ→ odd numbers

s : Q→ even numbers

encoding the tape alphabet and states of M respectively.
We consider a machine configuration C = (q, t, i) as given by a word a1 a2 . . . aj−1 q aj . . . al

over the alphabet Γ ∪Q where:

• the word a1 a2 . . . al represents a portion of the tape t that includes within it the head
position as well as all non-blank symbols; and

• 1 ≤ j ≤ l, where j represents the position of the tape head i relative to the start of the
extracted tape portion.

The configuration C can thus be encoded as a number

pCq := pr(a1) r(a2) . . . r(aj−1) s(q) r(aj) . . . r(al)q .

The following functions are then primitive recursive.

step : N→ N step(x) =

{
pC ′q if x = pCq and stepM (C) = C ′

0 otherwise

run : N2 → N run(n, x) = stepn(x)

extract : N→ N extract(x) =

{
n if x = ps(halt) r(bin(n))q

0 otherwise

halt?: N→ N halt?(x) =

{
0 if x = ps(halt) r(w)q for some w

1 otherwise

init : Nk → N init(x1, . . . , xk) = ps(start) r(bin(x1) ‘,’ . . . ‘,’ bin(xk))q

Then f is explicitly given as a partial recursive function by:

f(x1, . . . , xk) = extract(run(µ(n 7→ halt?(run(n, init(x1, . . . , xk)))), init(x1, . . . , xk))) .

22

5 Enumerating the Computable Partial Functions

We can view the course thus far as having established two alternative approaches to defining
computability. On the one hand, we have the Turing machine model, according to which the
basic notion of computability concerns partial functions on words Σ∗1 ⇀ Σ∗2 . On the other,
we have the notion of partial recursive function, which, in a self-contained way, defines a
basic notion of computability for partial functions on natural numbers Nk ⇀ N. Theorem 4.4
establishes that both approaches lead to the same notion of computable partial function on
Nk ⇀ N.

When considering the TM model as basic, we introduced the notion of representation to
account for computability with forms of data beyond words over an alphabet. Indeed, it
was via suitable representations of natural numbers and products that the notion of TM-
computable function Nk ⇀ N was defined.

Given that the computable partial functions on N can be viewed in their own right as the
fundamental notion of computability, an alternative approach to computability with general
forms of data is to take the partial recursive functions on N as basic, and to define computabil-
ity on other sets X via representations of the elements of X using natural-number encodings
for them instead of the word encodings used in Note 3. Since it is standard in computability
theory to adopt this second approach, we now make the small change of perspective required
to effect this.

For the remainder of the course, we redefine the notion of representation. Henceforth, a
representation of a set X is a surjective partial function ρ : N⇀⇀X . Given this redefinition,
it is easy to similarly redefine concepts related to representations by making the necessary
adjustments. For example, the notion of computable partial function between represented
sets, Definition 3.7, becomes the following.

Definition 5.1 (Computable partial function). Given representations ρ1 : N⇀⇀X1 and
ρ2 : N⇀⇀X2, we say that a partial function f : X1 ⇀ X2 is (ρ1 → ρ2)-computable if there exists
a computable partial function g : N⇀ N such that, for every x ∈ X1 and ρ1-name n for x,

• g(n)↓ if and only if f(x)↓, and

• g(n)↓ implies g(n) is a ρ2-name for f(x).

(Equivalently, for any n ∈ dom(ρ1), (i) ρ2(g(n)) ' f(ρ1(n)), and (ii) g(n)↓ ⇒ g(n) ∈
dom(ρ2).)

A partial function g : N ⇀ N satisfying the conditions above is said to be a realiser for the
function f .

We write ρN for the identity representation ρN := n 7→ n : N→→N. Given two represen-
tations ρ1 : N⇀⇀X1 and ρ2 : N⇀⇀X2, the product representation (ρ1 × ρ2) : N⇀⇀ (X1 ×X2) is
defined by:

(ρ1 × ρ2)(n) '

{
(x1, x2) if n = p(n1, n2) and ρ1(n1) = x1 and ρ2(n2) = x2

↑ otherwise

where p is the pairing function from Note 4.
A representation ρ is said to be total if ρ is a total function (defined on all numbers).

Clearly ρN is total. Also, the product operation preserves the totality of representations.

23

5.1 Enumerating computable partial functions

For every n ≥ 1, we shall enumerate all the n-ary computable partial functions:

φn0 , φ
n
1 , φ

n
2 , φ

n
3 , . . .

(In the case n = 1, we usually write simply φe rather than φ1
e.) This enumeration enjoys the

following properties.

• For every e ∈ N, φne is an n-ary computable partial function.

• Every n-ary computable partial function arises as φne for some e ∈ N.

Thus the function e 7→ φne is a representation of the set

Comp(Nn ⇀ N) := {f : Nn ⇀ N | f is computable}

To define the enumeration, recall our encoding, from Lecture 2, of any Turing machine M
as a string:2

〈M〉 ∈ ΣU
∗ = { 0, 1, −1, [,] , ‖ , • }∗ .

By renaming the characters in ΣU as integers 0, 1, . . . , 6, we have 〈M〉 ∈ N∗. By combining
with the function p·q : N∗ → N defined in Lecture 4, we thus encode a TM as a single natural
number

p〈M〉q ∈ N .

We define the partial function φne : Nn ⇀ N by

φne (x1, . . . , xn) '


y if there is a TM M such that e = p〈M〉q and

M halts in the halt state with output bin(y)

when run on input bin(x1) ‘,’ . . . ‘,’ bin(xn)

undefined otherwise.

Clearly the enumeration (φne)e∈N enjoys the two bullet-pointed properties above.
We use the enumeration of computable partial functions to prove:

Proposition 5.2. The total function h : N→ N below is not computable.

h(x) =

{
φx(x) + 1 if φx(x) is defined

0 otherwise

Proof. Suppose, for contradiction, that h is computable. Then there exists e ∈ N such that
h = φe. So we have:

φe(e) = h(e) = φe(e) + 1 .

This is the required contradiction.

2We modify this encoding very slightly by adapting it for Turing machines with a distinguished halt state,
rather than for TMs with accept and reject states.

24

5.2 The universal computable partial function

Theorem 5.3 (Universal function). For any n ≥ 1, the (n+1)-ary function ψnU defined below
is computable.

ψnU (e, x1, . . . , xn) ' φne (x1, . . . , xn) .

We call ψnU the universal function for n-ary computable partial functions. In the special case
n = 1, we shall often write ψU rather than ψ1

U . The universal function ψnU can be understood
as a realiser for the evaluation function

(f, x1, . . . , xn) 7→ f(x1, . . . , xn) : Comp(Nn ⇀ N)× Nn ⇀ N .

The existence of the universal function thus means that the evaluation function is computable
as a partial function between represented sets.

Proof. We outline the construction of a TM, V , that computes ψnU .
V takes an input string of the form:

bin(e) ‘,’ bin(x1) ‘,’ . . . ‘,’ bin(xn)

It then proceeds as follows.

• It checks that e = p〈M〉q for some TM M . This can be done by extracting the unique
string w such that e = pwq and then inspecting w to see if it is a legitimate encoding
of a TM. If not, V goes into a loop.

• If the above check succeeds, then V simulates the execution of M on the input string
bin(x1) ‘,’ . . . ‘,’ bin(xn) by running the universal Turing machine on the input string
〈M〉 〈bin(x1) ‘,’ . . . ‘,’ bin(xn)〉.

• If the execution of the universal TM terminates, then the final configuration is inspected
to see if the machine is in the halt state with bin(y) on the output tape, for some y. If
so, V terminates in the halt state with output bin(y).

• Otherwise, V goes into a loop.

As an application of the universal function, we prove the non-computability of a particular
function of interest.

Proposition 5.4. The unary (total) function below is not computable.

g(x) =

{
1 if φx is a total function

0 otherwise

Proof. Suppose, for contradiction, that g is computable.
Consider the function

h(x) =

{
φx(x) + 1 if φx is total

0 otherwise
(1)

25

Using the assumption that g is computable, together with the computability of the universal
function, it follows that h is computable, because

h(x) =

{
ψU (x, x) + 1 if g(x) = 1

0 if g(x) = 0

So h = φe for some e, and we have

φe(e) = h(e) = φe(e) + 1 ,

because h is total by definition. This gives the required contradiction.

5.3 The s-m-n theorem

Theorem 5.5 (The s-m-n theorem). For every n > m ≥ 0, there exists an (m + 1)-ary
primitive recursive function smn : Nm+1 → N such that, for all e, x1, . . . , xn,

φn−msmn (e, x1,...,xm)(xm+1, . . . , xn) ' φne (x1, . . . , xn) .

In other words, the s-m-n theorem states that, for every n > m ≥ 0, the function

(f, x1, . . . , xm) 7→ ((xm+1, . . . , xn) 7→ f(x1, . . . , xn)) : Comp(Nn ⇀ N)×Nm → Comp(Nn−m⇀ N)

is computable as a function between represented sets, and has a primitive recursive realiser.

Proof. The m = 0 case is trivial as s0
n can be the identity function.

If m > 0 define:

smn (e, x1, . . . , xm) =


p〈M ′〉q if e = p〈M〉q, where M ′ is the TM that begins execution

by writing “ bin(x1) ‘,’ . . . ‘,’ bin(xm) ‘,’ ” in front of its

given input and then proceeds as M

e otherwise

(Note that the machine M ′ is designed so that it behaves correctly when it is given the input
“ bin(xm+1) ‘,’ . . . ‘,’ bin(xn) ”.)

The function smn is computable because there is a clear algorithmic process for going from
(p〈M〉q, x1, . . . , xm) to p〈M ′〉q. This can be formalised by defining a corresponding Turing
machine.

The function smn can be shown to be primitive recursive using the machinery developed
in Exercise Classes. We do not go into the (rather involved) details.

5.4 Kleene’s normal form theorem

Kleene’s normal form theorem shows that every computable partial function can be obtained
from primitive recursive functions using only one invocation of the minimisation (µ) operation.
Moreover, it can be so obtained in a standard way.

The result is often useful for allowing informal arguments about computability (e.g., ap-
peals to the Church-Turing thesis, which will be discussed in Lecture 6) to be replaced by
rigorous mathematical arguments.

26

Theorem 5.6 (Kleene’s normal form theorem). There exists a unary primitive recursive
function U : N→ N and, for each n ≥ 1, an (n+ 2)-ary primitive recursive function Tn such
that, for all e, x1, . . . , xn,

φne (x1, . . . , xn) is defined iff there exists z ∈ N such that Tn(e, x1, . . . , xn, z) = 0; (2)

and

φne (x1, . . . , xn) ' U((µTn)(e, x1, . . . , xn)) . (3)

So φne (x1, . . . , xn) = U(z), where z is the least number such that Tn(e, x1, . . . , xn, z) = 0 if
such a z exists.

Proof. The idea is that Tn(e, x1, . . . , xn, z) = 0 holds if and only if e = p〈M〉q for some TM
M and z encodes the entire sequence of machine configurations, from initial configuration to
final configuration, encountered when executing M on input bin(x1) ‘,’ . . . ‘,’ bin(xn) . Then
U(z) extracts from an encoded sequence of TM configurations, the number y such that bin(y)
is on the tape of the final halt configuration.

In more detail, we define

Tn(e, x1, . . . , xn, z)

=



0 if e = p〈M〉q for some TM M and z encodes a sequence p〈C1〉q, . . . , p〈Ct〉q
such that:

• C1 is the configuration (start, (bin(x1) ‘,’ . . . ‘,’ bin(xn))@0, 0);

• each config. Ci+1 is obtained by one step of M computation from Ci; and

• Ct is a configuration of the form (halt, bin(y)@i, i)

1 otherwise

The function Tn can be shown to be primitive recursive using the machinery developed in
exercise classes, and using ideas similar to those used in the proof of Proposition 4.7 in
Lecture 4. We do not give further details.

We finally define

U(z) =


y if z encodes a sequence z1, . . . , zt whose last entry zt

is of the form p〈C〉q where C is a TM configuration

of the form (halt, bin(y)@i, i)

17 otherwise

Again this function can be shown to be primitive recursive.

We shall often write T for the function T 1, which will play a prominent role in future lectures.

27

6 The Church-Turing Thesis

Over the last century, numerous models of computation have been proposed.

1. Partial recursive functions (Gödel/Herbrand, early 1930s)

2. λ-calculus (Church 1936)

3. Turing machines (Turing 1936)

4. String rewriting systems (Post 1920s–40s)

5. Unrestricted grammars (Chomsky 1950s)

6. State/register machines (1960s)

7. Nondeterministic and probabilistic TMs (1960s and 70s)

8. Quantum Turing machines (Deutsch 1985)

9. Hypercomputation (2000s)

10. Real world computers (1940s–future)

Regarding the above, we have the following mathematical result.

Models 1–8 are equivalent in terms of:

• which (partial) functions they compute, and

• which problems they (semi)decide.

We do not state this as a theorem because it is really a whole collection of theorems, each
stating a pairwise equivalence between two different models. Moreover every such statement of
pairwise equivalence needs a careful formulation in order to be made mathematically precise.
In this course, we have seen one such precise statement: Theorem 4.4, which asserts the
equivalence between models 1 and 3 above. Many of you will have encountered other such
equivalence theorems in your research for your presentation.

There is another direction in which models 1–8 can be compared, namely in terms of
computational efficiency. This comparison is less straightforward. For example, models 1
and 6 work directly with computation on natural numbers (sometimes integers), and do not
directly take account of the space requirements needed in reality to store and compute with
large numbers. In contrast, models 2–5, 7 and 8, do take account of such requirements. For
example, in a TM, O(log(n)) tape squares are needed to record a natural number n, which
indeed corresponds to the reality of storing numbers. Nevertheless, assuming that the space
requirements of computation are accounted for by, in the case of models 1 and 6, imposing
an O(log(n)) cost on integer storage, it can be proved that models 1–6 are equivalent in
terms of the time/space complexity of computation, modulo a possible polynomial overhead
in translating between models.3 It is an open question whether the various models included in
7 and 8 are also equivalent to TMs in terms of their time/space complexity. For example, the

3In order to obtain this equivalence, certain nonstandard ‘efficient’ encodings of numbers are needed in
some models (e.g., λ-calculus).

28

equality P = NP, which is a famous open question, asserts the polynomial-time-complexity
equivalence of deterministic and nondeterministic TMs.

In this course, we concern ourselves only with computability not with complexity. For our
purposes, therefore, we can assert that models 1–8 are equivalent.

The notion of hypercomputation does not describe a single model of computation, but
rather refers in general to models of computation that go strictly beyond Turing machines
in terms of computation power. In all known cases this is achieved by including features in
the model that are in practice impossible (or at least highly unlikely) to be achievable in a
physical computation device. Some examples of such features include: accessing “oracles”
that know the answer to undecidable questions; computing for an infinite amount of time and
then returning a result; testing infinite-precision real numbers for equality, etc. Such notions
of hypercomputation can be useful as mathematical models. However, they do not bear much
resemblance to computation as performed in practice.

In contrast, modern computers directly correspond to computation as performed in prac-
tice. However, compared with a Turing machine, a modern computer has a significant limita-
tion. Even if gigantically large, the memory of a computer is finite. Because of this, real-world
computers have less computation power than Turing machines.

Although the infinite tape of a Turing machine is clearly a physical impossibility, there is a
good argument that it is the correct abstraction for modelling the abstract idea of physically
realisable computation. Even though any physical computation process will necessarily only
use a finite amount of storage and time, it is natural not to give a priori bounds to the
amount. This exactly corresponds to the situation with a Turing machine, where, at any
point in time, only a finite portion of the tape has been written on, although there is no
upper bound to the amount of free tape available.

Modulo accepting the idealisation of allowing the potential of unlimited time and space,
Turing machines model a notion of computation that is clearly physically realisable. Let us
evaluate all the models under discussion from this perspective.

1.–6. These models are clearly physically realisable.

7. Nondeterminism is physically realisable modulo having a scheduler that makes the (cor-
rect!) nondeterministic choices. Probabilistic computation is physically realisable if we
can tap into a physical source of randomness.

8. Quantum computation is physically realisable in principle. The extent to which it is
physically realisable in practice is a major research question.

9. The physical realisability of hypercomputation is the realm of science fiction.

10. Computers are not just physically realisable, they are actually physically realised.

In his 1936 paper, Turing gave a compelling argument that Turing computability cor-
responds to the informal notion of computability by a person/machine/agent following an
algorithm. Moreover, from the above discussion, we see that all the physically realisable
abstract models of computation we have considered (models 1–8) have the same computa-
tion power as a Turing machine. Thus we have both philosophical and empirical reasons to
believe that, whatever notion of computability one comes up with, as long as the model is
physically reasonable, the notion of computability cannot properly go beyond that of Turing
computability.

29

Historically, this realisation was achieved in the following steps.

• Church (1936) explicitly proposed that λ-calculus computability coincides with informal
computability, though he did not provide further argument supporting this.

• Turing (1936) argued that TM-computability coincides with informal computability,
and proved that TM-computability coincides with λ-calculus computability.

• Subsequently, numerous notions of computability have been given, and all physically
feasible such notions have been proven to coincide with TM-computability.

Taking the above into consideration, Kleene explicitly formulated:

The Church-Turing Thesis: The informal notion of computability coincides with the math-
ematical notion of TM-computability.

Equivalently, this thesis may be reformulated as stating that informal computability coincides
with any of the other notions of computability that have been shown to be mathematically
equivalent to TM-computability.

By accepting the Church-Turing thesis, we can prove that mathematical functions (sets,
relations, etc.) are computable merely by giving an informal algorithm to compute them.
The Church-Turing thesis then tells us that there necessarily exists a corresponding Turing
machine. In practice, the level of rigour of proof achieved in this way is acceptable, as the
apparent reliance on the Church-Turing thesis is deceptive. We have enough experience on
this course with manipulating Turing machines that we should be capable of building, from
any informal algorithm description, a corresponding Turing machine. So we are confident
that we could fill in all mathematical details in a proof of computability if pressed to do so
(although it would certainly be a tedious exercise).

In regard to negative results, the Church-Turing thesis plays a more significant role. Typi-
cally we will give a mathematical proof that a function (set, relation, etc.) is not computable,
making use of TM-computability (or one of the other equivalent models of computability) to
prove the result. Having done this, we can invoke the Church-Turing thesis and more gener-
ally conclude that there is no hope of ever finding any sort of informal algorithm whatsoever.
This general conclusion is entirely dependent on the Church-Turing thesis.

In my view, the Church-Turing thesis is a very rare (perhaps even unique) example of
a philosophical question (What is computability?) receiving a precise mathematical answer
(TM-computability or equivalent). Moreover, not only is this answer widely accepted, but
there are not even any really plausible alternative answers on offer.

30

7 Computable and Computably Enumerable Sets

This lecture studies properties of decidable and semidecidable sets of natural numbers. Fol-
lowing standard practice we introduce new terminology for these sets, referring to them as
computable and computably enumerable sets respectively.

7.1 Definitions and basic properties

Definition 7.1 (Computable set). A subset A ⊆ N is said to be computable (alternative
words: decidable, recursive) if its (total) characteristic function χA : N→ N is computable.

χA(x) =

{
1 if x ∈ A
0 otherwise

Definition 7.2 (Computably enumerable set). A subset A ⊆ N is said to be computably
enumerable (c.e.) (alternative words: semidecidable, recursively enumerable) if its partial
characteristic function χpA : N→ N is computable.

χpA(x) '

{
1 if x ∈ A
↑ otherwise

Definitions 7.1 and 7.2 are in fact special cases of the definitions of decidable and semide-
cidable subset from Lecture 3, adjusted from word representations to N-representations and
instantiated in the case of the representation ρN. We give the above special cases of the
definitions directly, since the concepts are fundamental.

The following important set (the halting set) will be use frequently in our study of com-
putable and c.e. sets.

K := {e ∈ N | φe(e)↓}

We shall show that K is c.e. but not computable. These properties of K are fundamental to
much of what follows in the course.

Proposition 7.3. The set K is not computable.

Proof. Suppose, for contradiction, that χK is computable. Then so is the partial function

h(x) '

{
↑ if χK(x) = 1

0 if χK(x) = 0 .

Since h is computable, we have h = φe for some e. Then:

φe(e)↓ ⇔ e ∈ K ⇔ h(e)↑ ⇔ φe(e)↑ .

This gives the required contradiction.

Proposition 7.4. The set K is computably enumerable.

This will be proved below.

31

7.2 Characterisations of computable and c.e. sets

Proposition 7.5. A set A ⊆ N is c.e. if and only if it is the domain of a unary computable
partial function.

Proof. The left-to-right implication is immediate since A is the domain of χpA.
For the converse, suppose f : N ⇀ N is a computable partial function. Then the partial

function g : N⇀ N defined below is also computable.

g(x) '

{
1 if f(x)↓
↑ otherwise

By definition g = χpdom(f). So dom(f) is indeed c.e.

Proof of Proposition 7.4. K is the domain of the computable partial function x 7→ ψU (x, x) .

Proposition 7.5 gives us a standard enumeration of the c.e. sets:

We := dom(φe) .

In other words, the function
e 7→We : N→ CE

gives a total representation of the set CE of all computably enumerable sets

Lemma 7.6. A set A ⊆ N is c.e. if and only if there exists a computable total function
t : N2 → N such that, for all x ∈ N,

x ∈ A ⇔ ∃z t(x, z) = 0 . (4)

Proof. For the left-to-right implication, suppose that A is c.e. Then A = We for some e. By
Kleene’s normal form theorem (Theorem 5.6)

x ∈We ⇔ ∃z T (e, x, z) = 0 .

Therefore
t(x, z) := T (e, x, z)

is a computable total function with the required properties.
For the converse, given any computable total function t : N2 → N, let (4) define A. Since

computable partial functions are closed under minimisation, the partial function µt : N ⇀ N
is computable. Because t is total, the domain of µt is A. It thus follows from Proposition 7.5
that A is c.e.

Given a subset A ⊆ N, we write A for the complement subset

A := N−A .

Theorem 7.7. A set A ⊆ N is computable if and only if both A and A are c.e.

32

Proof. The left-to-right implication is easy and left as an exercise.
For the right-to-left implication, suppose A and A are both c.e. By Lemma 7.6 there exist

total computable s, s′ : N2 → N such that

x ∈ A ⇔ ∃z s(x, z) = 0

x /∈ A ⇔ ∃z s′(x, z) = 0 .

It follows that the computable partial function g defined below is total.

g := µ((x, z) 7→ min(s(x, z), s′(x, z))

Often we shall write such definitions using minimisation using a (hopefully) more readable
notation. For example, in the case of g,

g(x) = µz (min(s(x, z), s′(x, z))=0) ,

read as: “g is the function that maps x to the smallest z such that min(s(x, z), s′(x, z))=0”.
The characteristic function χA can be computed using s, s′ and g by:

χA(x) =

{
1 if s(x, g(x)) = 0

0 otherwise .

Since the setK is c.e. but not computable, the corollary below is an immediate consequence
of Theorem 7.7.

Corollary 7.8. The set K is not c.e.

The terminology “computably enumerable” is motivated by an important property that
characterises c.e. sets. Any (nonempty) c.e. set can be enumerated by a computable (total)
function. This is established by the theorem below.

Theorem 7.9. The following are equivalent for a set A ⊆ N.

1. A is c.e.

2. A = ∅ or A is the range of a (unary) total computable function.

3. A is the range of a computable partial function.

Proof.
1. ⇒ 2. Suppose A is c.e. and A 6= ∅. Select any a0 ∈ A. By Lemma 7.6, there exists a total
computable s : N2 → N satisfying

y ∈ A ⇔ ∃z s(y, z) = 0 .

Using the pairing function p : N2 → N from Lecture 4, it follows that A is the range of the
total computable function below.

x 7→

{
y if s(y, z) = 0 where y, z are such that x = p(y, z)

a0 otherwise .

33

2. ⇒ 3. This is trivial, because the empty set is the range of the everywhere undefined partial
function, and every total function is a fortiori a partial function.

3. ⇒ 1. Suppose A is the range of φe. Let T and U be as in Kleene’s normal form theorem.
Then the total function s : N2 → N below is computable (indeed primitive recursive).

s(w, y) =

{
0 if T (e, x, z) = 0 and w = U(z) where y = p(x, z) (w = φe(x) follows)

1 otherwise .

Then w ∈ A if and only if ∃y s(w, y) = 0. So A is c.e. by Lemma 7.6.

By Theorem 7.9, we have a second standard enumeration of the c.e. sets:

Ee := the range of φe .

That is, the function
e 7→ Ee : N→ CE

gives a second total representation of the set of all computably enumerable sets. In the
exercise class, it will be shown that the e 7→We and e 7→ Ee representations are equivalent.

We say that a total function f : N→ N is strictly increasing if x < y implies f(x) < f(y).

Theorem 7.10. The following are equivalent for a set A ⊆ N.

1. A is computable

2. A is finite or A is the range of a strictly increasing computable total function.

Proof.
1. ⇒ 2. Suppose A is computable and infinite. Define f(−1) = −1. Then, for x ≥ 0, define:

f(x) := the smallest n > f(x− 1) such that χA(n) = 1 .

Because χA is a computable total function, and because A is infinite, this definition defines a
strictly increasing computable total function f�N : N→ N . By construction, A = range(f).

2. ⇒ 1. It is easy to see that every finite set is computable (exercise).
Suppose A is the range of a strictly increasing computable total function f . Define g by:

g(n) =

{
1 if n = f(x) where x is the smallest number s.t. f(x) ≥ n
0 if n 6= f(x) where x is the smallest number s.t. f(x) ≥ n .

Since f is strictly increasing and total, g is total too. Moreover g is easily seen to be com-
putable. By construction, g = χA . Therefore, A is computable.

Corollary 7.11. Every infinite c.e. set has an infinite computable subset.

Proof. Let A be an infinite c.e. set. By Theorem 7.9, there exists a total computable function
f such that A = range(f). Define g : N→ N as follows.

g(0) := f(0)

g(n+ 1) := f(m), where m is the smallest number s.t. f(m) > g(n) .

Since range(f) is infinite, g is total. By construction, g is also computable and increasing.
Clearly range(g) ⊆ range(f) = A, and range(g) is infinite. By Theorem 7.10, range(g) is

thus an infinite computable subset of A.

34

8 Rice’s Theorem and the Rice-Shapiro Theorem

Let C be the set of unary computable partial functions. Today’s two main theorems address
the problem of understanding for which sets B ⊆ C the question

Does a computable function belong to B?

is decidable or semidecidable.
Here the relevant notions of decidability and semidecidability are those pertaining to

subsets of a represented set, as defined in Lecture 3, but adapted to N-based representations.
In our case, the representation in question is given by our standard enumeration φ : N→→C,
which is a total representation. Using this fact, one can unwind the definitions to obtain the
following easy characterisation (which, for the purposes of this lecture can equivalently be
taken as a redefinition) of decidable and semidecidable subsets of C. For any B ⊆ C define:

IB := {e ∈ N | φe ∈ B} .

That is, IB is the set of indices of functions in B. Then:

• B is decidable if and only if IB is computable; and

• B is semidecidable if and only if IB is computably enumerable.

8.1 Total and partial reductions

Reductions provide a very useful method for showing that sets are or are not computable or
computably enumerable. Suppose A and B are subsets of N.

Definition 8.1 (Total reduction). A (total) reduction of A to B is given by a computable
total function f : N→ N such that

x ∈ A ⇔ f(x) ∈ B .

(Equivalently A = f−1B.) We say that A is (totally) reducible to B if there exists a total
reduction of A to B.

Our terminology is non-standard. In the literature, the standard terminology is many-to-one
reducible (or m-reducible for short) rather than totally reducible.

Definition 8.2 (Partial reduction). A partial reduction of A to B is given by a computable
partial function g : N⇀ N such that

x ∈ A ⇔ g(x) ∈ B .

(Equivalently A = g−1B, note that this implies that g(x)↓ for all x ∈ A.) We say that A is
partially reducible to B if there exists a partial reduction of A to B.

Note that every total reduction is a fortiori a partial reduction.

Lemma 8.3 (Reduction lemma).

1. If A is totally reducible to a computable set B then A is also computable.

2. If A is partially reducible to a c.e. set B then A is also c.e.

Proof. The statements are easy consequences of the definitions of computable and c.e. set
respectively. It is left as an exercise to check the details.

35

8.2 Rice’s theorem

Theorem 8.4 (Rice’s theorem). The only decidable subsets of C are ∅ and C.

Proof. The asserted property expands to: for any B ⊆ C, it holds that IB is computable if
and only if B = ∅ or B = C.

It is trivial that B = ∅ and B = C both imply that the set IB is computable.
For the converse, suppose that we have proper inclusions ∅ ⊂ B ⊂ C. We need to show

that IB is not computable.
Without loss of generality, suppose that f∅ /∈ B where f∅ is the everywhere undefined

partial function. (This is no loss of generality, because if f∅ ∈ B then f∅ /∈ C − B, so the
argument below can be used to show that IC−B is not computable. But IC−B = IB, and IB is
computable if and only if IB is.)

Select any function g ∈ B, and define a binary partial function

f(x, y) '

{
g(y) if x ∈ K
↑ otherwise .

Then f is computable because K is c.e. By the s-m-n theorem, there is a total computable
s : N→ N such that

φs(x)(y) ' f(x, y) .

Then we have:

x ∈ K ⇒ φs(x) = g ⇒ s(x) ∈ IB
x /∈ K ⇒ φs(x) = f∅ ⇒ s(x) /∈ IB .

That is, s is a total reduction of K to IB. Since K is not computable, it follows from the
reduction lemma that IB is also not computable.

8.3 The Rice-Shapiro theorem

We say that a partial function f : N ⇀ N is finite if dom(f) is a finite set. It is easy to see
(exercise) that every finite partial function is computable. For partial functions f, g : N⇀ N,
we say that f is a restriction of g (notation f ⊆ g) if:

for all x ∈ N, f(x)↓ ⇒ g(x) = f(x) .

(In particular, it follows that f(x)↓ ⇒ g(x)↓.)

Theorem 8.5 (The Rice-Shapiro theorem). If B ⊆ C is semidecidable then, for any com-
putable partial function f ,

f ∈ B ⇔ there exists a finite f ′ ⊆ f with f ′ ∈ B . (5)

Proof. We show that the failure of either implication of (5) allows us to reduce the set K to
IB, implying that IB is not c.e.; that is, B is not semidecidable.

Suppose the left-to-right implication of (5) fails; i.e.,

f ∈ B, but for all finite f ′ ⊆ f we have f ′ /∈ B . (6)

36

Because K is c.e., there is, by Lemma 7.6, a total computable t : N2 → N such that

x ∈ K ⇔ ∃z t(x, z) = 0 .

Define a computable partial function

g(x, z) '

{
f(z) if t(x, y) 6= 0 for all 0 ≤ y ≤ z
↑ if t(x, y) = 0 for some 0 ≤ y ≤ z .

By the s-m-n theorem, there is a total s : N→ N such that

φs(x)(z) ' g(x, z) .

By construction, φs(x) ⊆ f for all x. Also:

x ∈ K ⇒ φs(x) is finite ⇒ s(x) /∈ IB by (6)

x ∈ K ⇒ φs(x) = f ⇒ s(x) ∈ IB .

Thus s is a reduction of K to IB. Since K is not c.e. (Corollary 7.8), it follows from the
reduction lemma that IB is also not c.e.

Lastly, suppose the right-to-left implication of (5) fails; i.e., f is a computable partial
function such that f ′ ∈ B, for some finite f ′ ⊆ f , but f /∈ B. Define a computable partial
function

g(x, z) '

{
f(z) if z ∈ dom(f ′) or x ∈ K
↑ otherwise.

The s-m-n theorem provides a total computable s : N→ N such that

φs(x)(z) ' g(x, z) .

Since f ′ ⊆ f , the definition of g gives us that:

x ∈ K ⇒ φs(x) = f ⇒ s(x) /∈ IB
x ∈ K ⇒ φs(x) = f ′ ⇒ s(x) ∈ IB .

Once again, s is a reduction of K to IB, from which it follows that IB is not c.e.

37

9 Varieties of Non-computable Set

9.1 Productive and creative sets

Since (We)e≥0 enumerates the computably enumerable sets, the following are equivalent for
a set A ⊆ N.

• A is not computably enumerable.

• For every e ≥ 0 such that We ⊆ A, there exists an element ae ∈ A−We.

One can view a number ae ∈ A −We as a witness to the fact that A 6= We. An important
class of non-c.e. sets is defined by asking for it to be possible to compute such a witness ae
from e.

Definition 9.1 (Productive set). A set A ⊆ N is productive if there is a computable total
function g : N→ N such that, for all e ≥ 0, it holds that We ⊆ A implies g(e) ∈ A−We.

It is immediate that any productive set is a fortiori not c.e.

Proposition 9.2. The set K is productive.

Proof. It is convenient to use the following description of K which is just a reformulation of
its definition.

K = {e | e ∈We} (7)

We show that the identity function g(x) = x demonstrates the productivity of K. Suppose
We ⊆ K. We need to show that e ∈ K −We .

Suppose, for contradiction, that e ∈ K. By (7), e ∈ We. Since We ⊆ K, we have e ∈ K.
This contradicts e ∈ K.

So e ∈ K. By (7), it follows that e /∈We. Thus indeed e ∈ K −We .

Recall the notions of total and partial reduction from A ⊆ N to B ⊆ N (Definitions 8.1
and 8.2). By the reduction lemma (Lemma 8.3), if A is reducible to B and A is not c.e.
then neither is B. In the case that the reduction is total, one gets a similar preservation of
productivity.

Lemma 9.3 (Reduction lemma, bis). If a productive set A ⊆ N is totally reducible to B ⊆ N
then B is also productive.

Proof. Let f : N→ N be a total reduction from A to B.
Using the universal function, the partial function

(e, x) 7→ φe(f(x))

is computable. By the s-m-n theorem,4 there is a computable total h : N→ N such that

φh(e)(x) ' φe(f(x)) ,

that is φh(e) = φe ◦ f .

4Explicitly, suppose (e, x) 7→ φe(f(x)) is given as φ2
d. Then define h to be the total computable function

e 7→ s12(d, e).

38

Let g be the computable total function that shows the productivity of A. We show that
f ◦ g ◦ h witnesses the productivity of B.

Accordingly, suppose We ⊆ B, i.e., dom(φe) ⊆ B. Since f reduces A to B, we have that
dom(φe ◦ f) ⊆ A; i.e., dom(φh(e)) ⊆ A; i.e., Wh(e) ⊆ A.

As g withesses the productivity of A, we have that g(h(e)) ∈ A−Wh(e). That is g(h(e)) ∈
A−dom(φe ◦f). Again using that f reduces A to B, we have that f(g(h(e))) ∈ B−dom(φe).
That is f(g(h(e))) ∈ B −We as required.

Recall from Lecture 7 that we write IB for the set of indices of partial functions in a set
B ⊆ C, and we write f∅ for the everywhere undefined partial function. The next result is a
strengthening of Rice’s theorem (Theorem 8.4).

Theorem 9.4. Suppose B ⊆ C is such that f∅ ∈ B 6= C. Then IB is productive.

Proof. The proof of Rice’s theorem (following the bracketed alternative to the “without loss
of generality” part) defines a reduction from K to IB. Since K is productive (Proposition 9.2),
it follows from Lemma 9.3 that IB is too.

Since productive sets are sets that strongly fail to be c.e., one can (via Theorem 7.7) view
a c.e. set whose complement is productive as a c.e. set that strongly fails to be computable.
Such sets are called creative.

Definition 9.5 (Creative set). A subset of N is creative if it is c.e. and its complement is
productive.

Proposition 9.6. The set K is creative.

Proof. Immediate from Propositions 7.4 and 9.2.

Theorem 9.7. Suppose ∅ ⊂ B ⊂ C is such that IB is c.e. then IB is creative.

Proof. Suppose IB is c.e. and ∅ 6= B 6= C. Since IB is c.e., it is not productive, so f∅ /∈ B, by
Theorem 9.4. Thus f∅ ∈ C − B, so IC−B is productive, by Theorem 9.4. But IC−B = IB. So
indeed IB is creative.

9.2 An extended example: arithmetic truth

The first-order formulas in the language of arithmetic are defined by:

• If p1 and p2 are (multivariate) polynomials with coefficients in N then p1 = p2 is a
formula (equality). (N.b., the set of multivariate polynomials includes the univariate
polynomials as a special case, and even individual natural numbers as a particularly
degenerate case.)

• If φ is a formula then so is ¬φ (negation).

• If φ and ψ are formulas then so are: φ∧ψ (conjunction), φ∨ψ (disjunction), and φ→ ψ
(implication).

• If φ is a formula then so are: ∀x φ (universal quantification), and ∃x φ (existential
quantification), for any variable x.

39

Formulas allow us to express properties of natural numbers. For example

∃z x+ z = y (8)

expresses the relation x ≤ y. More interestingly,

2 ≤ x ∧ ∀y ∀z (x = y.z → x = y ∨ x = z) (9)

expresses the property that x is prime number.
A formula is called a sentence if every variable x in the formula appears within the scope

of a quantifier ∀x of ∃x mentioning the same variable. Sentences express statements about
numbers that are either true or false. For example,

∀x ∃y x ≤ y ∧ Prime(y)

states the true property that there are infinitely many prime numbers. Here, the expressions
x ≤ y and Prime(y) are abbreviations for the formulas (8) and (9) above, with appropriate
renamings of variables when necessary.5

Another similar example of a sentence is

∀x (2 ≤ x → ∃y ∃z (Prime(y) ∧ Prime(z) ∧ 2.x = y + z))

which states the property that every even number greater than or equal to 4 is the sum of
two prime numbers. This statement is a famous open question in number theory known as
Goldbach’s conjecture.

The formulas (hence also sentences) of arithmetic are written as sequences of symbols.
Each formula φ can thus be encoded as a number pφq, using the coding techniques of Lecture 4
(Section 4.2). Define:

Sent := {n ∈ N | n = pφq for some sentence φ} .

The set Sent is computable because one can decode any n ∈ N as a sequence of symbols, and
algorithmically check that this sequence satisfies the definition of a sentence.

A major goal of number theory in mathematics is to establish whether interesting sentences
φ (such as Goldbach’s conjecture) are true or not. Truth amounts to membership of the set

True := {n ∈ N | n = pφq for some true sentence φ} .

The result below is a computability-theoretic version of the famous incompleteness theorem
of Kurt Gödel.

Theorem 9.8. The set True is productive.

This theorem makes an important statement about the limitations of algorithmic processes
in mathematics. Suppose we are given any method of enumerating (or semideciding) a set
of truths in arithmetic. (For example, any computable list of axioms, such as the Peano
axioms, generate such a method.) We can (routinely) convert this method (which presents a
computably enumerable set of truths) to an index e such that We is the enumerated set of
truths, hence We ⊆ True. By applying the function g that witnesses the productivity of True,

5For example, Prime(y) is (∃z 2 + z = y) ∧ ∀y′ ∀z (y = y′.z → y = y′ ∨ y = z).

40

we obtain g(e) ∈ True−We. Thus we (algorithmically) find a new truth that was omitted in
our original enumeration.

In summary, the truths of arithmetic are not axiomatisable in their entirety, nor indeed
enumerable by any algorithmic means whatsoever (assuming the Church-Turing thesis is true).

While a detailed proof of Theorem 9.8 is beyond the scope of this course, it is possible to
give an outline of the high-level argument. First one shows that, for any primitive recursive
function f : Nk → N, there exists a formula with φf (x1, . . . , xk, y) with free variables (those
not bound by quantifiers) x1, . . . , xk, y such that, for all n1, . . . , nk,m ∈ N,

φf (n1, . . . , nk,m) is true ⇔ f(n1, . . . , nk) = m .

The construction of φf is surprisingly involved.
Given the general construction of φf , we in particular have the formula φT , where T is as

in Kleene’s normal form theorem (Theorem 5.6). Now consider the total function

e 7→ p¬ ∃z φT (e, e, z, 0)q , (10)

which is computable because it involves calculating the code of a sentence that is constructed
in a straightforward way from φT and e. For any e, it holds that p¬ ∃z φT (e, e, z, 0)q ∈ True
if and only if

there is no z such that T (e, e, z) = 0 .

But this holds if and only if e /∈We, that is if and only if e ∈ K.
We have shown that (10) defines a total reduction from K to True. Since K is productive,

it follows from Lemma 9.3 that the set True is too.

9.3 Immune and simple sets

Every c.e. but non-computable set we have met thus far is creative. The final goal of this
note is to show that there also exist noncomputable c.e. sets that are not creative; i.e., there
exist noncomputable c.e. sets whose complements are not productive.

To achieve this, we first observe a nontrivial property of productive sets.

Theorem 9.9. If A ⊆ N is productive then A contains an infinite c.e. subset.

Proof. Suppose g : N→ N witnesses the productivity of A.
We shall define a computable total function f : N→ N satisfying:

f(0) = e0 s.t. Weo = ∅
f(1) = e1 s.t. We1 = {g(e0)}
f(2) = e2 s.t. We2 = {g(e0), g(e1)}

. . .

f(n+ 1) = en+1 s.t. Wen+1 = Wen ∪ {g(en)} .

By induction on n, each en satisfies Wen ⊆ A, so g(en) ∈ A−Wen . Therefore g ◦ f is a total
computable function whose range is an infinite subset of A. By Theorem 7.9, its range is thus
an infinite c.e. subset of A.

41

It remains to define a computable f as above. By the s-m-n theorem, there exists a
computable total h : N→ N such that

φh(x)(y) '

{
17 if y ∈Wx or y = g(x)

↑ otherwise .

So Wh(e) = We ∪ g(e) . Therefore, f is computable by primitive recursion.

f(0) = any chosen e0 such that We0 = ∅
f(n+ 1) = h(f(n)) .

Corollary 9.10. Every productive set has an infinite computable subset.

Proof. Combine Theorem 9.9 and Corollary 7.11.

Theorem 9.9 suggests a way of identifying an interesting collection of sets that are neither
productive nor c.e.

Definition 9.11 (Immune set). A subset of N is immune if it is infinite but contains no
infinite c.e. subset.

Obviously an immune set is not itself c.e. By Theorem 9.9, it is also not productive.

Definition 9.12 (Simple set). A subset of N is simple if it is c.e. and its complement is
immune.6

Clearly a simple set is a non-computable c.e. set that is also not creative. The final result
today thus achieves the goal set at the start of the section.

Theorem 9.13 (Post’s theorem). There exists a simple set.

Proof. Consider the partial function f below, which is computable because it is definable
from the universal function using minimisation.

f(e) '


φe(z) if z is the smallest number such that

φe(0), φe(1), . . . , φe(z)

are all defined and φe(z) ≥ 2e ,

↑ if no such z exists.

Define A = range(f). We show that A is simple.
As A is the range of a computable partial function, it is c.e by Theorem 7.9.
To show that A is infinite, note that f(e) = n implies that n ≥ 2e. So the numbers

{0, 1, . . . , 2n − 1} can only appear as f(e) when e ∈ {0, . . . , n − 1}. So, for every n ≥ 0, at
least n distinct numbers from the set {0, 1, . . . , 2n − 1} belong to A. Therefore A is indeed
infinite.

Finally, let B be an infinite c.e. set. We need to show that B 6⊆ A. Since B is c.e., we
have, by Theorem 7.9, that B = range(φe) for some e such that φe is total. But then f(e) is
defined, because φe is total and B is infinite so certainly contains some number n ≥ 2e. We
therefore have f(e) = φe(z), for some z; whence f(e) ∈ range(f) ∩ range(φe) = A ∩ B. So
indeed B 6⊆ A.

6Although the terminology simple is clearly a misnomer, it is standard.

42

10 Computing with Infinite Words

Thus far in this course, we have been considering discrete data such as natural numbers and
strings, and notions of computability for sets and functions of such data. In his 1936 paper
“On computable numbers, with an application to the Entscheidungsproblem”, Turing’s basic
notion of computability concerned continuous data. The central definition in his paper was
that of computable real number.

One way of defining what it means for a real number to be computable is as follows. We
might say that a TM computes a real number if it generates the infinite decimal expansion
of the number along its output tape, e.g.,

3 · 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 . . .

Such a TM clearly needs to compute forever. We also need to require that it continues to
output data as it computes. Furthermore, we need to ask that the TM does not overwrite
initial portions of the output sequence once written on the tape, since, at any point in the
computational process, we would like to be able to identify the finite approximation to the
output number that has been already calculated.

Using the above considerations, one can define a precise notion of computable real number
in terms of ordinary TMs, as Turing did. However, the special status of the output sequence
(once a finite portion of it has been calculated it never gets overwritten) suggests that we
might build this into the model of computation. It is also natural (and in keeping with the
practical experience of computation with streams of data) to consider infinite sequences as
input.

For example, the following simple algorithm defines an intuitively computable function
from {0, . . . , 9}ω (the set of infinite sequences of decimal digits) to {0, . . . , 9}ω.

1. Read the next digit d from the input sequence.

2. Write 9− d to the output sequence.

3. Go back to step 1.

An example of a computation following the algorithm is:

Input: 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 . . .

Output: 8 5 8 4 0 7 3 4 6 4 1 0 2 0 6 7 6 1 5 3 7 3 5 6 6 1 6 7 2 0 4 9 . . .

In the case of this algorithm, if we understand the input sequence as the decimal expansion
of a real number x ∈ [0, 1] (e.g., x = 0.1415926 . . .) then the algorithm computes the decimal
expansion of the number y = 1−x (e.g., y = 0.8584073 . . .). That is, the algorithm computes
the function x 7→ 1− x : [0, 1]→ [0, 1] on real numbers.

10.1 Type 2 Turing Machines

We now introduce a model of computation specifically designed to compute with infinite
sequences/streams of data, as motivated above. We write Σω for the set of infinite sequences
of symbols from Σ. We variously refer to the elements of Σω as sequences, infinite words or
ω-words.

The notion of a Type 2 Turing Machine provides a simple mathematical model of an
idealised machine that takes infinite words as input and generates an infinite word as output.

43

Definition 10.1 (Type 2 Turing machine). A (deterministic) Type 2 Turing Machine (T2M
for short), with k ≥ 0 input tapes and N ≥ 0 working tapes, is specified by:

• a finite tape alphabet Γ with � ∈ Γ;

• an input/output alphabet Σ ⊆ Γ− {�};

• a finite set Q of states with start ∈ Q;

• a transition (partial) function

δ : Q× Σk × ΓN ⇀ Q× {0,+1}k × ΓN × {−1, 0,+1}N × (Σ ∪ {�}) .

Such a T2M has k input tapes which are infinite to the right (but not to the left). Asso-
ciated with each input tape is a corresponding read head which is unidirectional: it can move
only to the right. Each square of the input tape is required to contain a symbol from Σ.

As for an ordinary multi-tape TM, the N working tapes are infinite in both directions,
and each tape has a bidirectional read/write head. The tape squares contain symbols from
Γ, and only finitely many squares are non-blank.

Finally, there is a single output tape, which is again infinite to the right. Associated with
this tape is a unidirectional write head; again, it can move only to the right. At any point
in time, the output tape will start with finitely many (possibly 0) symbols from Σ, beyond
which the remaining squares will all be blank. The write head is always positioned at the
first blank square.

The computation of a T2M starts in the initial configuration in which:

• The state of the machine is start.

• The k read heads are at the leftmost squares of the k input tapes. And each input tape
i contains an infinite sequence pi ∈ Σω.

• The N working tapes are all blank.

• The write head is at the left end of the output tape and the output tape is blank.

A single step of computation then proceeds as follows. Suppose:

• the current machine state is q ∈ Q;

• the symbols at the current read positions on the k input tapes are a1, . . . , ak ∈ Σ;

• the symbols at the current head positions on the N working tapes are b1, . . . , bN ∈ Γ.

Suppose also that δ(q ; a1, . . . , ak ; b1, . . . , bN) is defined and equal to

(q′ ; e1, . . . , ek ; c1, . . . , cN ; d1, . . . , dN ; z)

then the following actions are performed.

• The state is changed to q′.

• Each read head i (where 1 ≤ i ≤ k) is is moved according to ei:

44

– if ei = 0 then read head i is not moved;

– if ei = +1 then read head i is moved one square to the right.

• On each working tape j (where 1 ≤ j ≤ N) the following is done.

– First symbol cj ∈ Γ is written on working tape j.

– Then read/write head j is moved according to dj ∈ {−1, 0,+1}.

• On the output tape the following is done.

– If z = � then no action is taken.

– Otherwise z ∈ Σ is written to the output tape, after which the write head is moved
one square to the right.

One could use the above description to formally define tape and machine configurations,
and to formally define the step function on machine configurations, as in Lecture 1. However,
at this stage in the course we leave this as a routine though cumbersome exercise.

10.2 Modi operandi of T2Ms

As with ordinary TMs, we consider various modi operandi of T2Ms, depending on their
purpose. Specifically, we consider:

• computing infinite words;

• computing functions on infinite words;

• deciding/semideciding sets of infinite words.

10.2.1 Computing infinite words

Definition 10.2 (Computing a sequence). A T2M M with k input tapes is said to compute
an infinite word

p = p0p1p2p3 · · · ∈ Σω

given input (p1, . . . , pk) ∈ (Σω)k if, for every n ≥ 0, there exists t such that, after t steps of
computation, M has written

p�n := p0 p1 . . . pn−1

as the first n symbols on the output tape.

Definition 10.3 (Computable sequence). A sequence p ∈ Σω is said to be computable if
there exists a T2M with no input tapes that computes it.

In the case that a T2M M has k ≥ 1 input tapes, then it is possible for M to compute a
non-computable p ∈ Σω given a non-computable input (p1, . . . , pk).

45

10.2.2 Computing functions on infinite words

Definition 10.4 (Computing a partial function). A k-input-tape T2M M is said to compute
a k-ary partial function f : (Σω)k ⇀ Σω if and only if:

• if (p1, . . . , pk) ∈ dom(f) then M computes f(p1, . . . , pk) given input (p1, . . . , pk); and

• M given input (p1, . . . , pk) computes some p ∈ Σω only if (p1, . . . , pk) ∈ dom(f).

Definition 10.5 (Computable partial function). A partial function f : (Σω)k ⇀ Σω is said
to be computable if there exists some T2M that computes it.

Note that, unlike with ordinary TMs, no halt state is used to define computability for functions
on infinite words. Indeed, computations that produce infinite words cannot halt.

10.2.3 Deciding/semideciding sets of infinite words.

An ω-language is a subset L ⊆ Σω. In order to recognise ω-languages, we assume a T2M
comes with:

• distinct halting states accept, reject ∈ Q.

Definition 10.6 (Acceptance/rejection).

• A single-input-tape T2M accepts p ∈ Σω if, when run with p on its input tape, it
eventually terminates in the accept state.

• A single-input-tape T2M rejects p ∈ Σω if, when run with p on its input tape, it
eventually terminates in the reject state.

Definition 10.7 (Recognised ω-language). The language recognised by a single-input-tape
T2M M is

Lω(M) := {p ∈ Σω |M accepts p} .

Definition 10.8 (Decidability/semidecidability).

• L ⊆ Σω is said to be semidecidable if there exists a T2M M such that L = Lω(M).

(We also say that the machine M semidecides L.)

• L ⊆ Σω is said to be decidable if there exists a T2M M such that L = Lω(M) and also
M rejects every p ∈ Σω − L.

(We also say that the machine M decides L.)

Proposition 10.9. If an ω-language L ⊆ Σω is decidable then it is semidecidable.

10.3 Relation to TM computation

As already alluded to at the start of this note, there is no absolute need to consider the notion
of type-2 Turing machine, in order to define the above notions of computability. It is in fact
possible to define all the relevant computability notions concerning ω-words directly in terms
of ordinary TMs. However, the definitions are more natural and compelling when formulated
using type-2 Turing machines, which is why we have chosen this approach.

46

Nevertheless, to illustrate how the notions can be defined in terms of ordinary TMs,
we consider one case: the computability of infinite words. Specifically, the result below
characterises the computability of an infinite word p ∈ Σω according to the T2M model
(Definition 10.3) in terms of the (semi)decidabity of the language

Prefix(p) := {p�n | n ≥ 0} ⊆ Σ∗

of finite prefixes of p, according to the TM model (Definition 1.7).

Proposition 10.10. For any p ∈ Σω, the following are equivalent.

1. The infinite word p is T2M-computable.

2. The language Prefix(p) is TM-decidable.

3. The language Prefix(p) is TM-semidecidable.

In particular, for languages of the form Prefix(p), semidecidability coincides with decidability.
This is very much a peculiarity of the restricted class of prefix languages.

Proof.
1. ⇒ 2. Let M be a T2M that computes p. To decide if a given input word w ∈ Σ∗ belongs
to Prefix(p), do the following.

• Simulate the execution of M until it produces as output symbols b0 . . . b|w|−1. (Since
M computes p ∈ Σω it is guaranteed to eventually produce |w| symbols.) Check the
equality w = b0 . . . b|w|−1. If this is true halt in state accept, otherwise halt in state
reject.

(The above informal algorithm can routinely be converted to an ordinary TM.)

2. ⇒ 3. Every decidable language is a fortiori semidecidable.

3. ⇒ 1. Suppose thatM is an ordinary TM that semidecides Prefix(p). Let Σ be {a1, . . . , am},
where all m symbols are distinct. Construct a T2M that behaves as follows.

• Once w = w0 . . . wn−1 has already been output, simulate the simultaneous execution of
m copies of M running on the input words wa1, . . . , wam respectively. This is done by
interleaving the computation steps of the m copies of M so that each copy completes
t execution steps before any copy proceeds with step t + 1. Because M semidecides
Prefix(p), exactly one copy will accept its input, waj say. When this happens, output
aj and return to the start of this bullet point.

Note that, at the start of the execution, w = ε has “already been output”, as this means
that nothing has been output, so the above algorithm does indeed get started.

(The above informal algorithm can be converted to a T2M.)

The notions of computability for partial functions on ω-words and (semi)decidability of ω-
languages can be reformulated in terms of ordinary TMs in a similar way. However, we shall
not go further into this.

47

11 Topological Aspects of Computing with Infinite Words

11.1 Semidecidability and open sets

Definition 11.1 (Cylinder set). Every finite word w ∈ Σ∗ determines a cylinder set 〈w〉 ⊆ Σω

defined by
〈w〉 := {p ∈ Σω | p�|w|= w} .

Definition 11.2 (Open set). A subset U ⊆ Σω is open if, for every p ∈ U there exists n ≥ 0
such that

〈p�n〉 ⊆ U .

Theorem 11.3. If L ⊆ Σω is semidecidable then it is open.

Proof. Let M be a T2M that recognises L. Consider any p ∈ L. We must show that, for
some n ≥ 0, it holds that 〈p�n〉 ⊆ L.

By the definition of recognising L, the T2M M terminates in the accept state when run
on input p. Define:7

n := 1 + position of input head when computation terminates.

Note that the computation of M on input p is entirely determined by the first n symbols of
the input tape, as the read head has not yet reached the other symbols. Accordingly, if p′ is
any sequence in Σω for which p′ �n= p �n then the T2M also halts in the accept state when
run on input p′. In other words, M accepts every ω-word in 〈p �n〉. Since M recognises L,
this means that 〈p�n〉 ⊆ L.

11.2 Decidability and clopen sets.

Recall that a family O of subsets of a set X is the collection of open sets of a topology if it is
closed under finite intersections (including the empty intersection, meaning that X ∈ O) and
arbitrary unions (including the empty union, meaning that ∅ ∈ O).

Proposition 11.4. The open subsets, as defined above, form a topology on Σω.

We omit the proof, which follows directly from the definitions.
Given a topology O on a set X, recall that a subset B ⊆ O is a base for the topology if

every U ∈ O is a union sets in B, i.e.,

U =
⋃
{B ∈ B | B ⊆ U} .

Proposition 11.5. The cylinder sets form a countable base for the topology on Σω.

Proof. Since each cylinder set is determined by a word w ∈ Σ∗, it is clear that there are
countably many cylinder sets. The condition for them forming a base requires that, for every
open set U ⊆ Σω, we have

U =
⋃
{〈w〉 | w ∈ Σ∗, 〈w〉 ⊆ U} .

This is obvious from the definition of open set.

7We consider the leftmost square of the input tape as being in position 0.

48

Given a topology O on a set X, recall that a subset A ⊆ X is said to be closed if its
complement

A := X −A

is open.

Proposition 11.6. If a subset L ⊆ Σω is decidable then it is both open and closed,

Proof. If L ⊆ Σω is decidable then both L and L are semidecidable. Hence, by Theorem 11.3,
they are both open.

Sets that are simultaneously open and closed are a rare phenomenon in the geometry-
based spaces that are often used as the main examples in topology courses. For example, in
connected spaces such as Rn, nontrivial open sets are never closed. In contrast, the space Σω

has a rich collection of such closed open sets. By the very definition of the topology on Σω,
every cylinder set is open. As the next proposition observes, cylinder sets are also closed.

Proposition 11.7. Every cylinder set is closed in Σω.

Proof. For any w ∈ Σ∗, consider the cylinder set 〈w〉. For any p ∈ 〈w〉, we have that that w
is not a prefix of p. Hence 〈p�|w|〉 ⊆ 〈w〉. This shows that 〈w〉 is open.

A set that is both open and closed in a topological space is called a clopen set. We have
shown that cylinder sets are all clopen. Since cylinder sets form a base, the space Σω has a
base of clopen sets. (In topology, spaces with bases of clopen sets are called zero-dimensional
spaces.)

Proposition 11.6 provides a connection between clopen sets and computability theory:
every decidable set is clopen. In fact, something more holds: the decidable sets are exactly
the clopen sets.

Theorem 11.8. A subset L ⊆ Σω is decidable if and only if it is clopen.

This theorem is one of today’s main results. The left-to-right implication has already been
proved as Proposition 11.6. The converse implication is trickier, and depends on the topolog-
ical notion of compactness. We shall return to this in Section 11.5 below.

11.3 Computability and continuity

Recall that a function f : X → Y between two topological spaces is defined to be continuous
if, for every open subset V of Y , the preimage f−1V is an open subset of X. Equivalently, f
is continuous if and only if the following property holds.

• For every x ∈ X and for every open V ⊆ Y with f(x) ∈ V , there exists an open subset
U ⊆ X with x ∈ U such that, for all x′ ∈ U , we have f(x′) ∈ V .

Theorem 11.9 (Continuity theorem (total functions)). If a total function f : Σω → Σω is
computable then f is continuous.

This continuity theorem for total functions is, in fact, a special case of a more general con-
tinuity theorem for partial functions. Recall that for any subset Z of a topological space X,
the subspace (or relative) topology on Z has as its open sets:

{U ∩ Z | U is an open subset of X} .

49

Theorem 11.10 (Continuity theorem (partial functions)). If a partial function f : Σω ⇀ Σω

is computable then f is continuous as a total function from dom(f) (endowed with the subspace
topology) to Σω.

In the special case of total functions f : Σω → Σω, Theorem 11.10 asserts the same property
as Theorem 11.9.

The next result characterises the property of continuity in more explicit terms. Continuity
amounts to a computationally meaningful property: finite prefixes of the output sequence are
determined by finite prefixes of the input sequence.

Proposition 11.11 (Characterisation of continuity). The following are equivalent for a par-
tial function f : Σω ⇀ Σω.

1. f is continuous as a total function from dom(f) (with the subspace topology) to Σω.

2. For all p ∈ dom(f) and n ≥ 0, there exists m ≥ 0 such that, for all p′ ∈ dom(f),

p′ �m = p�m ⇒ f(p′)�n = f(p)�n .

The proof is left as an exercise.

Proof of Theorem 11.10. Let f : Σω ⇀ Σω be a computable partial function, and let M be a
T2M that computes f . We show that f satisfies property 2 of Proposition 11.11. Accordingly,
consider any p ∈ dom(f) and n ≥ 0.

By the definition of computing f , there exists t ≥ 0 such that, after t steps of computation,
M outputs f(p)�n when given input p. Define:

m := 1 + position of input head after t computation steps on input p .

Note that the computation of M on input p for t computation steps is entirely determined by
the first m symbols of the input tape. (The read head has not yet reached the other symbols.)

Let p′ be any sequence in Σω such that p′ �m= p �m. Then the first t steps of the
computation of M on input p′ proceed identically to the computation of M on input p.
Therefore, the computation of M on input p′ writes f(p) �n as the first n symbols on the
output tape.

Since, in the case that p′ ∈ dom(f), the computation of M on p′ computes f(p′), this
means that f(p′)�n = f(p)�n.

11.4 Domains of computable partial functions are Gδ sets

A subset Z of a topological space X is said to be Gδ (pronounced “gee-delta”) if it can be
expressed as a countable intersection of open sets; that is, if there exists a countable family F
of open sets such that X =

⋂
F . (Here countable means either finite or countably infinite.) It

is trivial that every open set is Gδ. In general, however, there are Gδ subsets that are not open.
It is easy to see that Gδ subsets are closed under finite unions and countable intersections. In
the topological space Σω, it further holds that every closed set is Gδ. (Exercise: prove this!)

Theorem 11.12. If a partial function f : Σω ⇀ Σω is computable then dom(f) is a Gδ subset
of Σω.

50

Proof. Let f : Σω ⇀ Σω be a computable partial function, and let M be a T2M that computes
f . For every n ≥ 0, consider the following subset of Σω.

Dn := {p ∈ Σω |M produces ≥ n output characters when run on input p} .

The set Dn is semidecidable, because one can define a T2M that behaves like M but which
also counts (on an additional working tape), as it computes, how many output characters
have been given so far. As soon as this count number reaches the value n, the machine halts
in the accept state.

Since Dn is semidecidable, it is open. Note that⋂
n

Dn = {p ∈ Σω |M produces infinitely many output characters when run on input p} .

By the definition of what it means for M to compute f , it follows that
⋂
nDn = dom(f). As

a countable intersection of open sets, dom(f) is thus indeed a Gδ set.

11.5 Characterising decidability via compactness

Given a topology O on a set X, and a subset K ⊆ X, an open cover of K is a family W ⊆ O
such that

⋃
W ⊇ K. If W is an open cover of K then W ′ ⊆ W is said to be a subcover of K

if
⋃
W ′ ⊇ K.

Definition 11.13 (Compactness). A subset K ⊆ X is compact if every open cover of K has
a finite subcover.

We now restrict attention to the space X = Σω, with its topology of open sets as defined
in Section 11.1.

Theorem 11.14. Σω is compact.

(It is crucial in this theorem that the alphabet Σ is finite.)

Proof. LetW be an open cover of Σω. Assume for contradiction thatW has no finite subcover
of Σω.

We shall define an infinite sequence p0, p1, p2, . . . of elements of Σ, constructed by induction
on n ≥ 0 to satisfy, for every n:

• The n-element word p0 . . . pn−1 is such thatW contains no finite subcover of 〈p0 . . . pn−1〉.

Base case: n = 0 The n-element word p0 . . . pn−1 is the empty word ε, whence 〈p0 . . . pn−1〉 =
〈ε〉 = Σω. Indeed W has no finite subcover of Σω by assumption.

Step case: n+ 1 We already have the symbols p0, . . . , pn−1 , and the induction hypothesis is
that the n-element word p0 . . . pn−1 is such thatW contains no finite subcover of 〈p0 . . . pn−1〉.

Let the finite alphabet be Σ = {a1, a2, . . . , ak} (with k distinct symbols). Then

〈p0 . . . pn−1〉 = 〈p0 . . . pn−1a1〉 ∪ 〈p0 . . . pn−1a2〉 ∪ · · · ∪ 〈p0 . . . pn−1ak〉 .

If each of the k cylinder sets on the right had a finite subcover inW, then the union of these k
finite subcovers would give a finite subcover from W covering 〈p0 . . . pn−1〉, contradicting the
induction hypothesis. Accordingly, at least one cylinder set 〈p0 . . . pn−1ai〉 (where 1 ≤ i ≤ k)

51

has no finite subcover in W. Let i be the least such, and define pn := ai. We then indeed
have that W contains no finite subover of 〈p0 . . . pn〉, as required.

The infinite sequence p0, p1, p2, . . . defines an ω-word p ∈ Σω. BecauseW is an open cover
of Σω, there exists some open set U ∈ W with p ∈ U . Since U is open, there exists n ≥ 0
such that 〈p0 . . . pn−1〉 ⊆ U . Thus the singleton set {U} is a finite subset of W that covers
〈p0 . . . pn−1〉. This contradicts the property proved by induction, which states that W has no
finite subcover of 〈p0 . . . pn−1〉.

Corollary 11.15. Every closed subset A ⊆ Σω is compact.

We omit the proof. On the one hand, it is a standard lemma from topology that every closed
subset of a compact space is compact. On the other, it is anyway very easy to give a direct
argument, and this is left as an exercise.

We can now complete the proof of Theorem 11.8. We need to prove that every clopen
subset of Σω is decidable.

Proof of Theorem 11.8: right-to-left implication. Suppose that L is clopen. Since L is open,
we have L =

⋃
{〈w〉 | w ∈ Σ∗, 〈w〉 ⊆ L}; and so

{〈w〉 | w ∈ Σ∗, 〈w〉 ⊆ L}

is an open cover of L. Since L is closed, it is compact. Thus the open cover of L above has a
finite subcover, and so

L = 〈w1〉 ∪ · · · ∪ 〈wm〉 ,

for some m ≥ 0 and words w1, . . . , wm ∈ Σ∗.
We now have the following algorithm for deciding the set L, presented as an informal

description of a Type 2 Turing Machine. Given input p ∈ Σω, the machine looks at the first n
input characters, where n is the length of the longest word among w1, . . . , wm. For each word
wi (1 ≤ i ≤ m), the machine checks to see if the input prefix p�|wi| is the same as wi. If this
is true, for some i, the machine halts in the accept state. If not, a fact which is ascertained
after finitely many steps of computation during which every i = 1, . . . ,m is considered, the
machine halts in the reject state.

52

12 Computing with Real Numbers

Type 2 Turing machines compute with ω-words. In Lecture 10, we used this to perform
computation on real numbers, by representing real numbers as ω-words using decimal ex-
pansions. Alternatively, one might use binary representations or any other base b notation
(b ≥ 2). As it happens, this approach has serious limitations. For example, Proposition 12.1
below shows that the multiplication-by-three function is non-computable with respect to the
decimal representation, and this is a very basic function!

Proposition 12.1 (Inadequacy of decimal representation). There is no computable partial
function f : Σω ⇀ Σω, where Σ = {0, . . . , 9, ‘.’ } which maps every decimal representation of
x ∈ R+ to a decimal representation of 3x.

Proof. We prove the stronger property that there is no such continuous f . By the continuity
theorem (Theorem 11.10), this implies that there is no computable f .

Since 3× 1
3 = 1, such a continuous f must give either:

f(0 . 3 3 3ω) = 1 . 0 0 0ω or f(0 . 3 3 3ω) = 0 . 9 9 9ω .

Suppose that the left-hand equality holds.
By continuity, there exists m ≥ 0 such that, for any decimal representation p′ ∈ Σω with

p′ �m =

m symbols︷ ︸︸ ︷
0 . 3 3 . . . 3 ,

it holds that f(p′)�3 = 1 . 0 . In particular, if we consider the case

p′′ :=

m symbols︷ ︸︸ ︷
0 . 3 3 . . . 3 0ω

then we have f(p′′) �3 = 1 . 0 . However, p′′ is the decimal representation of a number x < 1
3 .

Since 3x < 1, no valid decimal representation for 3x can begin with the prefix 1 . 0 . This
contradicts that f computes decimal representations for the 3x function.

A similar argument gives a contradiction in the case that the right-hand equality holds.

In this lecture, we find a better representation for real numbers, allowing T2Ms to success-
fully perform real-number computation. More generally, we might be interested in computing
with elements of other interesting mathematical sets, for example:

C {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} ω1 (the first uncountable ordinal)

To cater for such a variety of possibilities, we introduce a general notion of (type 2) represen-
tation of a set X, via which elements of X are represented by infinite words.

12.1 Type two representations

In Lecture 3, we studied representations that encode elements of a set using names given
as words over an alphabet. Type two representations provide a similar encoding of elements
of a set using ω-words as names instead of finite words. Because there are continuum-many
ω-words, type two representations can be used to represent elements of uncountable sets such
as R. The definitions in this section parallel those of Note 3.

53

Definition 12.2. A (type two) representation of a set X by infinite words from an alphabet
Σ is a surjective partial function γ : Σω⇀⇀X.

Here the notation ⇀⇀ indicates a surjective partial function. Recall that surjectivity means
that, for every x ∈ X, there exists p ∈ Σω with γ(p) = x. We call any infinite word p such
that γ(p) = x a name (or realiser) for x.

Since the set Σω has continuum cardinality (i.e., cardinality 2ℵ0), any represented set X
can have at most continuum cardinality.

Definition 12.3 (Computable element). Given a representation γ : Σω⇀⇀X, we say that an
element x ∈ X is γ-computable if there exists a computable p ∈ Σω such that x = γ(p). That
is, x is γ-computable if it has some computable name.

When γ can be inferred from the context, we simply say that x is computable.

Definition 12.4 (Computable partial function). Given representations γ : Σω⇀⇀X and
γ′ : Σω⇀⇀X ′, we say that a partial function f : X ⇀ X ′ is (γ → γ′)-computable if there exists
a computable partial function g : Σω ⇀ Σω such that, for every x ∈ X and γ-name p for x,

• g(p)↓ if and only if f(x)↓, and

• g(p)↓ implies g(p) is a γ′-name for f(x).

Equivalently, for any p ∈ dom(γ), both: (i) γ′(g(p)) ' f(γ(p)), and (ii) g(p)↓ ⇒ γ′(g(p))↓.
Such a partial function g is said to be a realiser for the function f .

If f is (γ → γ′)-computable and g realises f then the following diagram of partial functions
commutes, for all p ∈ dom(γ).

Σω g
⇀ Σω

X

γ

�

f
⇀ X ′

γ′

�

For total functions f the definition of computability is equivalent to the commutativity of the
above diagram for all p ∈ dom(γ). For a partial function f , the definition of computability is
stronger than commutativity.

12.2 Representations of R

In Lecture 10 we implicitly considered a decimal digit representation of R. Now we have the
notion of representation, we can give an explicit representation of R. For the sake of variety,
we consider a binary digit representation rather than a decimal one.

Example 12.5 (Binary digit representation of R). Consider the alphabet Σb = {0, 1,−, ‘.’}.
We define a representation γb : Σω

b⇀⇀R as follows.
We define the domain dom(γb) to consist of those infinite words that have one of the two

forms below

dm−1 . . . d0 . d−1 d−2 d−3 d−4 . . . or − dm−1 . . . d0 . d−1 d−2 d−3 d−4 . . .

54

where m ≥ 0, and each di ∈ {0, 1}.
For p ∈ dom(γb), the value γb(p) is defined by:

γb(p) =


∑−∞

i=m−1 di . 2
i if p does not begin with −

−
∑−∞

i=m−1 di . 2
i if p does begin with − .

The next result shows that the binary representation of R suffers from the same defect as
the decimal representation implicitly considered in Lecture 10, cf. Proposition 12.1.

Proposition 12.6. The function x 7→ 3x : R→ R is not (γb → γb)-computable

This is proved similarly to Proposition 12.1.
We repair this unsatisfactory situation by defining an improved representation of R, the

Cauchy representation. A real number will be represented as a (fast converging) sequence
of (dyadic) rational numbers. Recall that a rational number is dyadic if it can be expressed
as an integer fraction in which the denominator is a power of 2. We write Qd for the set of
dyadic rationals. We can represent any such dyadic rational by a finite words u ∈ Σ∗b of the
form

dm−1 . . . d0 . d−1 . . . d−n or − dm−1 . . . d0 . d−1 . . . d−n

where m,n ≥ 0. Such a word u is interpreted as the dyadic rational qd(u) defined by:

qd(u) =


∑−n

i=m−1 di . 2
i if u does not begin with −

−
∑−n

i=m−1 di . 2
i if u does begin with − .

This just implements the ordinary binary notation for dyadic rational numbers. It defines
a type one representation (i.e., a representation using finite words for names in the sense of
Note 3) qd : Σ∗b ⇀ Qd of the dyadic rationals.

Example 12.7 (Cauchy representation of R). Using the above type one representation of
dyadic rationals, we define the Cauchy representation γc : Σc

ω⇀⇀R, where Σc := Σb ∪ { ; } as
follows. The domain dom(γc) consists of those infinite words of the form

u0 ; u1 ; u2 ; u3 ; u4 ; u5 . . .

where each ui ∈ Σ∗ is in dom(qd) and the sequence of (dyadic) rationals:

qd(u0) , qd(u1) , qd(u2) , qd(u3) , . . .

satisfies:
for all m ≥ n ≥ 0, |qd(um)− qd(un)| ≤ 2−n . (11)

(When condition (11) holds we say that (qd(ui))i is a fast converging Cauchy sequence.)
For such sequences p ∈ dom(γc), as defined above, define:

γc(p) = lim
n→∞

qd(un) .

We make a couple of elementary observations about the above definition, using very basic
analysis. The first point justifies that γc is indeed a representation.

55

Proposition 12.8.

1. For every x ∈ R there exists p ∈ Σc
ω such that x = γc(p).

2. If p ∈ dom(γc) is
u0 ; u1 ; u2 ; u3 ; u4 ; u5 . . .

then for every n ≥ 0, |qd(un)− γc(p)| ≤ 2−n.

Proof.

1. Let x ∈ R be arbitrary. Since the dyadic rationals are dense in R, for every n ≥ 0, there
exists some dyadic rational qn such that |x − qn| ≤ 2−(n+1). Let un ∈ Σ∗b be such that
qd(un) = qn. (It is easy to see that every dyadic rational is represented by some un.)
Then

u0 ; u1 ; u2 ; u3 ; u4 ; u5 . . .

is a name for x.

2. |qd(un)− γc(p)| = |qd(un)− limm→∞ qd(um)| = limm→∞ |qd(un)− qd(um)| ≤ 2−n , using
(11) for the last equality.

The Cauchy representation γc is finally a good representation of real numbers. It gives rise
to the same notion of computable real number as the binary (and decimal) representations.
However, it supports a far larger collection of computable functions on real numbers.

Proposition 12.9. A real number is γc-computable if and only if it is γb-computable.

We shall not give the proof of this result. In one direction, seeing that γb-computability
implies γc-computability is easy. The converse is quite messy, and is left as an exercise for
the enthusiastic.

Proposition 12.10. The function x 7→ 3x : R→ R is (γc → γc)-computable.

Proof. The required realiser g : Σω ⇀ Σω maps an infinite word

u0 ; u1 ; u2 ; u3 ; u4 ; u5 . . .

to
3u2 ; 3u3 ; 3u4 ; 3u5 ; 3u6 . . .

where 3u means an easily computed word in Σ∗b representing the dyadic rational 3 . qd(u).
The one subtle point is that the output sequence is shifted twice to the left (it starts with 3u2

rather than 3u0). This is done to ensure that the fast Cauchy property (11) is satisfied.

The computability of a very simple function such as x 7→ 3x is not a spectacular result.
But it is the tip of the iceberg. All the major functions on R arising in mathematical analysis
are computable relative to the γc representation. Because of its good behaviour, we shall
take γc as the standard representation of R. So if we talk about computability notions
(semidecidable set, computable function, etc.) related to real numbers, by default we mean
computability with respect to the γc representation. For example, Proposition 12.10 can be
restated concisely as:

Proposition 12.11. The function x 7→ 3x : R→ R is computable.

.

56

12.3 The continuity theorem

Computable partial functions on R enjoy a continuity property analogous to Theorem 11.10.
The major difference is that the notion of continuity in question is now the standard one for
(partial) functions from R to R, defined using the familiar ε-δ property.

Theorem 12.12 (Continuity theorem for R). If f : R⇀ R is computable then f is continuous
on its domain (i.e., f is a continuous function from dom(f) to R with respect to the subspace
topology on dom(f)).

One way of looking at this theorem is as a limitation on what is computable. Any partial
function on R that is not continuous on its domain is necessarily non-computable.

To prepare for the proof, we give a simple definition and lemma that strengthen Proposi-
tion 12.8. We say that p of the form

u0 ; u1 ; u2 ; u3 ; u4 ; u5 . . .

with γc(p) = x is a close name for x if for every n ≥ 0, |qd(un) − x| ≤ 2−(n+1). (Note that
the inequality is an improvement upon the ≤ 2−n in Proposition 12.8.)

Lemma 12.13.

1. Every x in R has a close name.

2. If
u0 ; u1 ; u2 ; u3 ; u4 ; u5 . . .

is a close name for x then, for every n ≥ 0, every x′ with |x′−x| < 2−(n+1) has a name
of the form

u0 ; u1 ; . . . ; un ; u′n+1 ; u′n+2 ; u′n+3 . . .

Proof.

1. Let
u0 ; u1 ; u2 ; u3 ; u4 ; u5 . . .

be any name for x then
u1 ; u2 ; u3 ; u4 ; u5 ; u6 . . .

is a close name for x, by Proposition 12.8.

2. In the case that x′ < x then, for every i ≥ n + 1, let qi be a dyadic rational such that
x′ < qi < x and qi − x′ < 2−(i+1), and let u′i be a word such that qd(u

′
i) = qi. The case

that x < x′ is similar. The case that x = x′ is trivial.

Proof of Theorem 12.12. Suppose f is computable with realiser g. Suppose f(x) is defined
and consider any ε > 0. We must find δ > 0 such that:

for all x′ ∈ dom(f) with |x′ − x| < δ, it holds that |f(x′)− f(x)| < ε .

Let p be a close name for x (as given by Lemma 12.13) of the form

p = u0 ; u1 ; u2 ; u3 ; u4 ; u5 . . .

57

Define r := g(p), which is defined because x ∈ dom(f). Then r is a name for f(x) because g
is a realiser for f ,

Since r ∈ dom(γc), it is of the form

r = v0 ; v1 ; v2 ; v3 ; v4 ; v5 . . .

Let N be such that 2−N < ε/2. Then |qd(vN)− f(x)| ≤ 2−N < ε/2, by Proposition 12.8.
Let n be the length (number of characters) of the prefix

v0 ; v1 . . . ; vN ;

of r. By the continuity theorem for computable functions on infinite words (Theorem 11.10),
there exists m ≥ 0 such that, for all p′ ∈ dom(g),

p′ �m = p�m ⇒ g(p′)�n = v0 ; v1 . . . ; vN ;

Let M ≥ 0 be such that the prefix

u0 ; u1 . . . ; uM ;

of p has length m′ ≥ m. Then, for all p′ ∈ dom(g),

p′ �m′ = u0 ; u1 . . . ; uM ; ⇒ g(p′)�n = v0 ; v1 . . . ; vN ; (12)

Define δ = 2−(M+1). Suppose x′ ∈ dom(f) is such that |x′ − x| < δ. By Lemma 12.13, x′

has a name p′ of the form

p′ = u0 ; u1 . . . ; uM ; u′M+1 ; u′M+2 ; u′M+3 . . .

Since x′ ∈ dom(f), it holds that g(p′)↓ and, by (12),

g(p′)�n = v0 ; v1 . . . ; vN ;

As g realises f , we have that g(p′) is a name for f(x′). By Proposition 12.8, we have that
|qd(vN)−f(x′)| ≤ 2−N < ε/2. Since also |qd(vN)−f(x)| < ε/2, we have that |f(x′)−f(x)| < ε,
as required.

58

13 Algorithmic Information Theory

13.1 Kolmogorov complexity

Definition 13.1 (Universal computable function {0, 1}∗ ⇀ {0, 1}∗). A computable par-
tial function u : {0, 1}∗ ⇀ {0, 1}∗ is universal if, for every computable partial function
f : {0, 1}∗ ⇀ {0, 1}∗, there exists a word vf ∈ {0, 1}∗ such that

f(w) ' u(vf w) , for all w ∈ {0, 1}∗ .

Proposition 13.2. There exists a universal computable function u : {0, 1}∗ ⇀ {0, 1}∗.

Definition 13.3 (Kolmogorov complexity). Let u : {0, 1}∗ ⇀ {0, 1}∗ be a universal com-
putable function. The Kolmogorov complexity relative to u of a word w ∈ {0, 1}∗ is:

Ku(w) := min{|v| | u(v) = w} .

The definition is dependent on the choice of universal function u, but any two universal func-
tions give rise to notions of Kolmogorov complexity that differ only by an additive constant.

Proposition 13.4. Suppose u, u′ : {0, 1}∗ ⇀ {0, 1}∗ are universal computable functions.
There exists c ≥ 0 such that, for all w ∈ {0, 1}∗, we have |Ku′(w) − Ku(w)| ≤ c; more
briefly: Ku′(w) = Ku(w) +O(1) .

Proof. Because u is universal and u′ is computable, there exists vu′ such that u′(w) ' u(vu′ w)
for all w. Similarly, there exists v′u such that u(w) ' u′(v′uw) for all w. So c = max(|vu′ |, |v′u|)
has the required property.

We henceforth fix a preferred universal computable function u and write K(w) for Ku(w).
The length of a string provides an upper bound for its Kolmogorov complexity (modulo

an additive constant).

Proposition 13.5. There exists c such that, for any w ∈ {0, 1}∗, we have K(w) ≤ |w| + c;
more briefly: K(w) ≤ |w|+O(1).

Proof. Since the identity function id(w) = w is computable, u(vidw) = w. So c = |vid| satisfies
the required property.

By the above result, we can think of any word w for which K(w) ≥ |w| as a word with
high Kolmogorov complexity (within a constant c of the highest possible value it can take).
The next result observes that at least one string of any length has high complexity in this
sense.

Proposition 13.6. For any n ≥ 0, there exists w ∈ {0, 1}∗ with |w| = n for which K(w) ≥ n.

Proof. There is at most one word with Kolmogorov complexity 0 (namely u(ε) if this is
defined), at most two words with complexity 1 (namely u(0) and u(1) if defined and different
from u(ε)), and in general at most 2n with complexity n. Thus the number of words with
complexity < n is

∑n−1
i=0 2i = 2n − 1. Since there are 2n words of length n, at least one of

them has complexity ≥ n.

59

A similar argument show that at least 2n−1 + 1 words of length n have complexity ≥ n− 1,
that is the majority of words of length n have such close-to-maximum complexity.

The next result observes that when a computable function on words maps an input word
to an output word, the Kolmogorov complexity increases by at most an additive constant.

Proposition 13.7. If f : {0, 1}∗ ⇀ {0, 1}∗ is computable, then there exists c such that, for
all w ∈ dom(f), it holds that K(f(w)) ≤ K(w) + c; more briefly K(f(w)) ≤ K(w) +O(1).

Proof. Because f(u(w)) ' u(vf◦uw) for all w, the constant c = |vf◦u| has the required
property.

Komolgorov complexity provides one (theoretical) perspective on the (practical) problem
of data compression. We might view a word w such that K(w)� |w| as compressible in the
sense that there exist words v much shorter than w from which w can be recovered as w = u(v).
If instead K(w) ≈ |w| then no such short word exists, so w is incompressible. (As usual, �
means much smaller than and ≈ means approximately equal to.) Kolmogorov wondered if
it is possible to find infinite bit sequences that are of such high complexity throughout that
every prefix is incompressible. This is formulated precisely by the definition below.

Definition 13.8 (Kolmogorov incompressibility). An ω-word p ∈ {0, 1}ω is Kolmogorov
incompressible if there exists c such that, for all n ≥ 0, it holds that K(p�n) ≥ n − c; more
briefly K(p�n) ≥ n−O(1).

It turns out, however, that the above property is impossible to satisfy. This was proved by
Martin-Löf.

Proposition 13.9 (Martin-Löf). There are no Kolmogorov incompressible sequences.

It turns out that the problem with Definition 13.8 is that the notion of Kolmogorov com-
plexity is too crude to allow the definition to work. We next look at a more subtle notion of
complexity, called prefix-free complexity

13.2 Prefix-free complexity

Prefix-free complexity is a variation on the idea of Kolmogorov complexity introduced by
Chaitin. The idea of Kolmogorov complexity is to measure the amount of information in a
word w, in terms of the number of bits needed to encode w via a word v that is decoded by
the universal function u(v) = w. However, there is a valid viewpoint that giving the word
v as input provides more information than just |v| bits. For example, if we were to input
v on a keyboard, we would type in |v| bits and press the enter key. So essentially we have
communicated v bits together with the additional information that our input has finished.
Chaitin’s idea was to vary the model of a universal function so that all the information is
encoded in the input word. That is, an input word w ∈ {0, 1}∗ should be self-delimiting :
when we type in a legitimate input w such that u(w) is defined, the universal function u
knows purely on the basis of the word w itself that we have completed the input. It follows
that no proper prefix of w′ of w can also be a legitimate input of u, otherwise u would not
allow us to complete the entry of the input w. It also follows that no word w′′ that has w as
a proper prefix can be an input. These points together say that the domain of u must be a
prefix-free set in the sense of the definition below.

60

A set W ⊆ {0, 1}∗ of words is said to be prefix free if, for every pair of distinct w,w′ ∈W ,
it holds that neither w nor w′ is a prefix of the other. A partial function f : {0, 1}∗ ⇀ {0, 1}∗ is
said to be prefix free if its domain is prefix free. Note that for any prefix-free u{0, 1}∗ ⇀ {0, 1}∗
and word v, the partial function w 7→ u(v w) is also prefix free.

Definition 13.10 (Universal computable prefix-free function {0, 1}∗ ⇀ {0, 1}∗). A com-
putable prefix free partial function u : {0, 1}∗ ⇀ {0, 1}∗ is universal if, for every computable
prefix free partial function f : {0, 1}∗ ⇀ {0, 1}∗, there exists a word vf ∈ {0, 1}∗ such that

f(w) ' u(vf w) , for all w ∈ {0, 1}∗ .

Proposition 13.11. A universal computable prefix free function u : {0, 1}∗ ⇀ {0, 1}∗ exists.

Definition 13.12 (Prefix-free complexity). Let u : {0, 1}∗ ⇀ {0, 1}∗ be a universal com-
putable prefix-free function. The prefix-free complexity relative to u of a word w ∈ {0, 1}∗
is:

Cu(w) := min{|v| | u(v) = w} .

As before, any two universal functions give rise to complexity measures that differ only
by an additive constant. We omit the proof, which is identical to that of Proposition 13.4.

Proposition 13.13. Suppose u, u′ : {0, 1}∗ ⇀ {0, 1}∗ are universal computable prefix-free
functions. There exists c ≥ 0 such that, for all w ∈ {0, 1}∗, we have |Cu′(w) − Cu(w)| ≤ c;
more briefly: Cu′(w) = Cu(w) +O(1) .

We henceforth fix a preferred universal computable prefix-free function u : {0, 1}∗ ⇀ {0, 1}∗
and write C(w) for Cu(w).

The upper bound for prefix-free complexity is more subtle than that for Kolmogorov com-
plexity (Proposition 13.5). For this lecture, we satisfy ourselves with the following statement,
which is weaker than the optimal bound.

Proposition 13.14. For any real d > 1, there exists c such that, for all w ∈ {0, 1}∗, we have
C(w) ≤ d |w|+ c; more briefly: C(w) ≤ o(|w|) .

Proof. Given a real d > 1, let N be such that N < d log2(2N − 1). Use blocks of N bits
to encode a 2N − 1-character alphabet Σ, with every word in {0, 1}N that contains a 1
representing a character. The word 0N is reserved as an end-of-input symbol. Encode words
w ∈ {0, 1}∗ as words w′ ∈ Σ∗ in a sensible way so that |w′| ≤ d|w|/ log2(2N − 1)e, and so
that the decoding function Σ∗ → {0, 1}∗ is computable. We now define a prefix-free function
f : {0, 1}∗ ⇀ {0, 1}∗ whose domain consists of words of length (k + 1)N for some k ≥ 0, in
which each of the first k blocks of N bits contains a 1 and whose last N bits are all 0. Such
a (k + 1)N -bit word thus represents a word a0 . . . ak−1 ∈ Σk followed by the end-of-input
symbol. The function f returns the word in {0, 1}∗ of length ≥ (k − 1) log2(2N − 1) encoded
by a0 . . . ak−1 ∈ Σ∗. Writing v for the (k + 1)N -bit input word , we see that

|v| = (k + 1)N ≤ d(k − 1) log2(2N − 1) + 2N ≤ d |f(v)|+ 2N .

Since the above function f is prefix free, we there exists vf such that u(vf w) = f(w). So the
constant 2N + |vf | satisfies the required property.

Once again, we view strings w whose complexity is close to |w| as being complex, and
such strings exist with an identical proof to that of Proposition 13.6.

61

Proposition 13.15. For any n ≥ 0, there exists w ∈ {0, 1}∗ with |w| = n for which C(w) ≥ n.

As for Kolmogorov complexity, computable functions increase prefix-free complexity by
at most an additive constant.

Proposition 13.16. If f : {0, 1}∗ ⇀ {0, 1}∗ is computable, then there exists c such that, for
all w ∈ dom(f), it holds that C(f(w)) ≤ C(w) + c; more briefly C(f(w)) ≤ C(w) +O(1).

The proof is the same as that of Proposition 13.6. It works because the function f ◦u is prefix
free. (For any partial function f and prefix-free function g, the composite function f ◦ g is
prefix free.)

One of Chaitin’s motivations for introducing prefix-free complexity was to define a mean-
ingful notion of incompressibility for infinite sequences, adapting Definition 13.8 in the obvious
way.

Definition 13.17 (Prefix-free incompressibility). An ω-word p ∈ {0, 1}ω is prefix-free incom-
pressible if there exists c such that, for all n ≥ 0, it holds that C(p�n) ≥ n− c; more briefly
C(p�n) ≥ n−O(1).

In contrast to the situation for Kolmogorov incompressibility, prefix-free incompressible ω-
words do exist.

A natural example of an incompressible ω-word is given by the following construction due
to Chaitin. We define a real number in the interval [0, 1]:

Ω :=
∑

w∈dom(u)

2−|w| . (13)

This indeed defines a number ≤ 1 because the set dom(u) is prefix free. This is known as
Kraft’s inequality. One way of seeing that it is true is as follows. The prefix free property
tells us that for distinct w,w′ ∈ dom(u), we have 〈w〉 ∩ 〈w′〉 = ∅; i.e., the words in dom(u)
have disjoint cylinder sets. The formula (13) thus calculates the probability that a randomly
generated (by fair coin tosses) p ∈ {0, 1}ω lands in dom(u). Since the sum is a probability it
is ≤ 1.

The interpretation as a probability also leads to a nice conceptual description of Ω: it is
the probability that if we feed a randomly generated r ∈ {0, 1}ω bit-by-bit to the universal
prefix-free function u, we shall eventually, after n bits say, arrive at an input word r �n in the
domain of u, resulting in a terminating computation u(r �n). Accordingly, Ω is often referred
to as Chaitin’s halting probability.

It can be proven that Ω as defined above is an irrational (indeed non-computable) number.
Accordingly, it can be given a unique binary expansion pΩ ∈ {0, 1}ω; i.e., we have:

Ω =

∞∑
i=0

pΩ
i 2−(i+1) .

Theorem 13.18 (Chaitin). pΩ is a prefix-free-incompressible sequence.

Proof. We define a computable partial function f : {0, 1}∗ ⇀ {0, 1}∗ with the following be-
haviour. For any n ≥ 0, it holds that f(pΩ �n) is defined and C(f(pΩ �n)) > n.

In outline, f runs the following algorithm. Let w0, w1, w2, . . . be a computable enumer-
ation of dom(u) without repetitions. (Since dom(u) is infinite and the domain of a partial

62

computable function, it has such an enumeration.) Given an input word p0 . . . pn−1 of length
n in {0, 1}∗, the algorithm finds the smallest N ≥ 0 such that

N−1∑
i=0

2−|wi| ≥
n−1∑
i=0

pi · 2−(i+1) ,

if such N exists. The algorithm then returns the first v ∈ {0, 1}∗, according to a standard
enumeration of the set {0, 1}∗, with the property that v /∈ {u(w0), . . . , u(wN−1)}.

To show that this algorithm enjoys the claimed property, suppose p0 . . . pn−1 = pΩ �n.
Then N as above exists by the definition of Ω, and indeed

n−1∑
i=0

pi · 2−(i+1) ≤
N−1∑
i=0

2−|wi| < Ω <

n−1∑
i=0

pi · 2−(i+1) + 2−n .

(The strict inequalities here are because Ω is irrational.) Since (by 13) any w ∈ dom(u)
contributes a weight of 2−|w| to Ω, and since Ω −

∑N−1
i=0 2−|wi| < 2−n, it follows that every

wi with i ≥ N is such that |wi| > n. Thus, for any v ∈ {0, 1}∗ with the property that
v /∈ {u(w0), . . . , u(wN−1)}, we have C(v) > n, because such a v can only arise as v = u(w)
for w with |w| > n.

Since the algorithm for f returns v ∈ {0, 1}∗ with the property that v /∈ {u(w0), . . . , u(wN−1)},
it does indeed hold that

C(f(pΩ �n)) > n . (14)

By Proposition 13.16, there exists c such that, for all n ≥ 0,

C(f(pΩ �n)) ≤ C(pΩ �n) + c . (15)

Putting (14) and (15) together, for all n ≥ 0,

C(pΩ �n) > n− c ;

i.e., pΩ is prefix-free incompressible.

63

14 Algorithmic Randomness

14.1 Random sequences

Consider a sequence p = p0 p1 p2 · · · ∈ {0, 1}ω obtained by tossing a fair coin ad infinitum.
Such a sequence will be called a random sequence. What properties should we expect such a
sequence to satisfy?

One very simple example property is that we would expect such a random p to be different
from the sequence 0ω . One can justify this expectation as follows.

• For any n ≥ 0, the probability that a randomly generated p satisfies p�n= 0n is 2−n.

• So, the property p = 0ω determines a non-randomness test as follows. Given a sequence
p ∈ {0, 1}ω, and any small ε > 0, considered as the probability of making an error (an
error threshold), we find n such that 2−n ≤ ε and examine p �n. If p �n= 0n then we
have detected that p is unlikely to be random, with probability of error ≤ ε.

• Since the sequence 0ω passes this test for every ε > 0, we can detect that 0ω is non-
random up to any error threshold.

• We take this as justification that 0ω is non-random.

The mathematical structure of the above non-randomness test is as follows.

• We have a sequence T0, T1, T2, . . . of subsets of {0, 1}ω

Tn = 〈0n〉 := {p ∈ {0, 1}ω | p�n= 0n} .

• Given p and n with p ∈ Tn, we can see that p ∈ Tn is true using a finite-time observation.

• It holds that limn→∞ λ(Tn) = 0, where λ(Tn) is the probability that a randomly gener-
ated p belongs to Tn.

• 0ω ∈
⋂∞
n=0 Tn (in fact {0ω} =

⋂∞
n=0 Tn).

We now consider a more sophisticated example of a property of random sequences. For
p ∈ {0, 1}ω and n > 0 define

n-mean(p) :=
1

n

n−1∑
i=0

pi .

We shall argue that every random p satisfies the property

the sequence (n-mean(p))n converges and lim
n→∞

n-mean(p) =
1

2
. (16)

Property (16) is known as the law of large numbers. Accordingly, we write LLN(p) to say that
p satisfies property (16).

Again we justify that LLN(p) holds for random p, by showing that we can detect the failure
of LLN(p) using a non-randomness test.

Suppose that LLN(p) fails for a sequence p ∈ {0, 1}ω. This means that there exists δ > 0
such that ∣∣∣∣n-mean(p)− 1

2

∣∣∣∣ > δ for infinitely many n . (17)

64

If a sequence p satisfies (17) then we say that it has δ-bias, and we write δ-bias(p) to say that
this holds.

We construct a non-randomness test showing that every sequence with δ-bias is non-
random.

• Define:

Tn =

{
p ∈ {0, 1}ω | for at least n different values of i,

∣∣∣∣i-mean(p)− 1

2

∣∣∣∣ > δ

}
.

• Given p and n such that p ∈ Tn, we can verify that p ∈ Tn in finite time, by searching
for n different values of i such that

∣∣i-mean(p)− 1
2

∣∣ > δ. If p ∈ Tn then eventually this
search will find such values i1 < i2 < · · · < in . (Note that the search will not terminate
in the case that p /∈ Tn .)

• It holds that limn→∞ λ(Tn) = 0. We take this on trust, as its proof requires probability-
theory calculations that are outside the scope of this course.

• {p ∈ {0, 1}ω | δ-bias(p)} ⊆
⋂∞
n=0 Tn . (Again this is actually an equality of sets.)

As in the first example, this test is applied as follows to a sequence p.

• Given any error threshold ε > 0, find n ≥ 0 such that λ(Tn) ≤ ε. Check to see if p ∈ Tn,
which if true can be verified in finite time. If so, conclude that p is non-random with
probability of error ≤ ε.

• Since every sequence with δ-bias passes the test for every ε > 0, we can detect that
every such sequence is non-random up to any error threshold.

• We take this as justification that every sequence with δ-bias is non-random.

By the contrapositive, random sequences do not have δ-bias for any δ > 0. Therefore, every
random sequence p satisfies LLN(p).

14.2 Näıve non-randomness tests

The above examples (and other similar ones) suggest the following natural notion of non-
randomness test, which we give at this point even though some of the concepts involved (the
Cantor topology, the probability function λ) have not been formally defined.8 Full definitions
will be given in Section 14.4.

Definition 14.1 (Non-randomness test, temporary definition). A non-randomness test is
given by a sequence (Tn)n≥0 of subsets of {0, 1}ω such that:

1. Every Tn is open in the Cantor topology on {0, 1}ω, and

2. limn→∞ λ(Tn) = 0 , where λ(Tn) is the probability that a randomly generated p lies in
the set Tn.

A sequence p ∈ {0, 1}ω is said to satisfy the test if p ∈
⋂∞
n=0 Tn .

8Actually, the Cantor topology was considered in exercises 4 and 5 of Tutorial 9.

65

The way in which such a general non-randomness test is applied follows the same pattern
as before.

• Given any error threshold ε > 0, find n ≥ 0 such that λ(Tn) ≤ ε. Check to see if p ∈ Tn,
which, because Tn is open, can be verified if true in finite time. If so, conclude that p is
non-random with probability of error ≤ ε.

• If a sequence p passes the test for every ε > 0, we can detect that p is non-random up
to any error threshold.

This leads to the following tentative general definition of random sequence.

Definition 14.2 (Random sequence, temporary definition). A sequence p ∈ {0, 1}ω is said
to be:

• non-random if there exists a non-randomness test that p satisfies;

• random if it does not satisfy any non-randomness test.

The reason that the above definitions are labelled as temporary is that there is a funda-
mental problem with them.

Proposition 14.3. According to Definitions 14.1 and 14.2, no sequence is random.

Proof. Let q ∈ {0, 1}ω be arbitrary. Define

Tn = 〈q �n〉 := {p ∈ {0, 1}ω | p�n= q �n} .

Then (Tn)n is a non-randomness test that q satisfies.

14.3 Martin-Löf tests

In spite of the negative result of Proposition 14.3, the above approach to characterising
randomness using non-randomness tests is not fundamentally wrong. However, we need to
be a little more careful about how we define non-randomness tests.

If a non-randomness test is to be applicable in practice to test a sequence p ∈ {0, 1}ω,
then the following additional properties should hold.

(A) Given any error threshold ε > 0, it should be possible to calculate from ε an appropriate
n ≥ 0 such that λ(Tn) ≤ ε.

(B) There should be an algorithm for testing (semideciding), given p ∈ {0, 1}ω and n,
whether p ∈ Tn.

Note that the second property does not apply to the tests used in the proof of Proposition 14.3
in the case that q is a non-computable sequence.

Thus we shall build in notions from computability theory to define a practicable notion
of non-randomness test.

Definition 14.4 (Martin-Löf test). A Martin-Löf (non-randomness) test (M-L test for short)
is a sequence (Tn)n≥0 of subsets of {0, 1}ω such that:

• (Tn)n is a computable sequence of computable open sets.

• limn→∞ λ(Tn) = 0 with a computable rate of convergence.

We remark that the first bullet point in the definition implements property (B) above, and
the second implements property (A).

66

14.4 Supporting definitions

14.4.1 The probability function λ

The aim of this section is to define, for every open set T , the probability λ(T) that a randomly
generated p belongs to T .

For cylinder sets, the definition is simple:

λ(〈w〉) = 2−|w| .

Lemma 14.5. Every open set T is a countable disjoint union of cylinder sets; i.e., there
exists G ⊆ {0, 1}∗ such that:

• T =
⋃
{〈w〉 | w ∈ G}, and

• for all w,w′ ∈ G with w 6= w′, it holds that 〈w〉 ∩ 〈w′〉 = ∅ .

Note that any such G is automatically countable because {0, 1}∗ is a countable set.

Proof. If T is open then T =
⋃
{〈w〉 | w ∈ G′} holds for some set G′, for which the disjointness

property may fail. Define:

G = {w ∈ G′ | no proper prefix of w is in G′} .

The correctness of this definition is left as an exercise.

To define the probability of an arbitrary open set T , we find G such that

T =
⋃
{〈w〉 | w ∈ G} a disjoint union

and we then define
λ(T) =

∑
w∈G

λ(〈w〉) .

It will be proved in the exercise class that this is a good definition; i.e., if⋃
{〈w〉 | w ∈ G} =

⋃
{〈w〉 | w ∈ G′} both disjoint unions

then ∑
w∈G

λ(〈w〉) =
∑
w∈G′

λ(〈w〉) .

(A remark for the measure-theoretically informed reader. The above definition coincides
with defining λ(T) as the measure assigned to the open set T by the uniform probability
measure on the Borel sets of {0, 1}ω .)

14.4.2 Computable open sets

We write O({0, 1}ω) for the set of open subsets of {0, 1}ω. Consider the alphabet

Σo := {0, 1, ; , ∅} .

We define a representation
γo : Σo

ω⇀⇀ O({0, 1}ω) .

67

dom(γo) consists of those sequences in Σo
ω of the form

p = w0 ;w1 ;w2 ;w3 ;w4 ; . . .

where each wi is either the symbol ∅ or a word in {0, 1}∗ .
For such a sequence p ∈ dom(γo), we define:

γo(p) =
⋃
i≥0

〈wi〉 ,

where by convention we define 〈∅〉 := ∅ .
An open set T ∈ O({0, 1}ω) is defined to be computable if it is γo-computable in the sense

of Definition 12.3.
It is an interesting fact that the computable open sets coincide with the semidecidable

sets in the sense of Lecture 11.

14.4.3 Computable sequence of open sets

We define a representation
γωo : Σo

ω⇀⇀ (O({0, 1}ω))ω .

Recall the pairing function p : N2 → N defined in Lecture 4. Using this, we consider a
sequence s ∈ Σo

ω as representing an infinite sequences

π0(s) π1(s) π2(s) π3(s) . . .

of sequences in Σo
ω, by defining

πi(s) := sp(i,0) sp(i,1) sp(i,2) sp(i,3) . . .

The representation γω0 is defined on those sequences s satisfying:

for every i, πi(s) ∈ dom(γo) .

For such a sequence s, define

γω0 (s) := γo(π0(s)) γo(π1(s)) γo(π2(s)) γo(π3(s)) . . .

A sequence (Tn)n≥0 is said to be a computable sequence of open sets if it is γω0 -computable.

Lemma 14.6. If (Tn)n≥0 is a computable sequence of open sets then every Tn is a computable
open set.

The proof, which is left as an exercise, is a consequence of the computability of the pairing
function p.

14.4.4 Computable rate of convergence

Rather than giving the general definition of computable rate of convergence for an arbitrary
Cauchy sequence, we consider only the case that the limit of the Cauchy sequence is 0, which
is the only case we need.

Definition 14.7. A Cauchy sequence (xn)n in [0, 1] with limit 0 has a computable rate of
convergence if there exists a computable increasing function r : N → N satisfying: for any
n ≥ 0 and m ≥ r(n), we have xm ≤ 2−n.

68

14.5 Martin-Löf Randomness

Definition 14.8 (Martin-Löf random). A sequence is Martin-Löf random (M-L random for
short) if it satisfies no M-L test.

Proposition 14.9. If q ∈ {0, 1}ω is computable then q is not M-L random.

Proof. Let q ∈ {0, 1}ω be computable. Define

Tn = 〈q �n〉 := {p ∈ {0, 1}ω | p�n= q �n} .

Because q is computable, it holds that (Tn)n is a computable sequence of open sets. Also
λ(Tn) = 2−n, so limn→∞ λ(Tn) = 0 with r(n) = n giving a computable rate of convergence.
Finally, q ∈

⋂
n≥0 Tn .

A fundamental property of Martin-Löf randomness is that there is a single M-L test that
is satisfied by every non-M-L-random sequence. Such a test is called a universal test.

Definition 14.10 (Universal test). An M-L test (Tn)n is universal if it is satisfied by every
sequence that is not M-L random.

Theorem 14.11 (Martin-Löf 1966). There exists a universal M-L test (TUn)n .

The universal test is thus a single test that can always be used as a statistical test of non-
randomness.

The proof of Theorem 14.11 is not terribly difficult. However, it would need an additional
lecture to address it. In the absence of this, we content ourselves with considering some
consequences of the existence of the universal test.

Corollary 14.12.

1. The set
RML := {p ∈ {0, 1}ω | p is M-L random}

is a countable union of closed subsets of {0, 1}ω .

2. λ(RML) = 1, where λ is the uniform (Borel) probability measure on {0, 1}ω .

3. There exists an M-L-random sequence.

Proof.

1. By the definition of the universal test, the set of non-random sequences {0, 1}ω −RML

satisfies
{0, 1}ω −RML =

⋂
n≥0

TUn .

Since {0, 1}ω − RML is a countable intersection of open sets, its complement RML is a
countable union of closed sets.9

9Subsets that arise as counbtable unions of closed sets are known as Fσ sets.

69

2. By the monotonicity of Borel measure, for all m ≥ 0,

λ

⋂
n≥0

TUn

 ≤ λ(TUm) .

As (TUn)n is an M-L test, we have limn→∞ λ(TUn) = 0 hence

λ({0, 1}ω −RML) = λ

⋂
n≥0

TUn

 = 0 .

Hence, by finite additivity of Borel measure,

λ(RML) = 1− λ({0, 1}ω −RML) = 1 .

3. Since RML has positive measure it cannot be empty.10

We now know that Martin-Löf-random sequences exist and are almost surely (i.e., with
probability 1) produced by randomly tossing a fair coin ad infinitum. Is it possible to give
an explicit definition of an ML-random sequence? In fact it is. The sequence pΩ defined
from Chaitin’s halting probability Ω in Note 13 is one such sequence. This follows from the
following deep and beautiful connection between ML-randomness and incompressibility, due
to Schnorr.

Theorem 14.13 (Schnorr). The following are equivalent for any p ∈ {0, 1}ω.

1. p is ML-random.

2. p is prefix-free incompressible.

So randomness defined in terms of failing any statistical tests for non-randomness (ML-
randomness) coincides with randomness in terms of not exhibiting any patterns that can
be exploited for compression purposes (prefix-free incompressibility). The proof of this theo-
rem is quite involved, and beyond the scope of this course. Nevertheless, as a bridge between
the last two topics we have covered, and as a result that connects computability theory with
topics of wider interest, the statement of this theorem seems a fitting end for the course.

10In fact, it is a standard fact that every set of positive measure, under any non-atomic probability measure
on a complete separable metric space, has cardinality 2ℵ0 . Thus there are 2ℵ0 -many ML-random sequences.

70

